Khovanov homology and diagonalizable Frobenius algebras

2020 ◽  
Vol 29 (01) ◽  
pp. 1950095
Author(s):  
Paul Turner

We give a short elementary proof that a Khovanov-type link homology constructed from a diagonalizable Frobenius algebra is degenerate.

2018 ◽  
Vol 27 (07) ◽  
pp. 1841002
Author(s):  
Louis H. Kauffman

This paper shows how, in principle, simplicial methods, including the well-known Dold–Kan construction can be applied to convert link homology theories into homotopy theories. The paper studies particularly the case of Khovanov homology and shows how simplicial structures are implicit in the construction of the Khovanov complex from a link diagram and how the homology of the Khovanov category, with coefficients in an appropriate Frobenius algebra, is related to Khovanov homology. This Khovanov category leads to simplicial groups satisfying the Kan condition that are relevant to a homotopy theory for Khovanov homology.


2014 ◽  
Vol 66 (1) ◽  
pp. 205-240 ◽  
Author(s):  
Miodrag Cristian Iovanov

Abstract“Co-Frobenius” coalgebras were introduced as dualizations of Frobenius algebras. We previously showed that they admit left-right symmetric characterizations analogous to those of Frobenius algebras. We consider the more general quasi-co-Frobenius (QcF) coalgebras. The first main result in this paper is that these also admit symmetric characterizations: a coalgebra is QcF if it is weakly isomorphic to its (left, or right) rational dual Rat(C*) in the sense that certain coproduct or product powers of these objects are isomorphic. Fundamental results of Hopf algebras, such as the equivalent characterizations of Hopf algebras with nonzero integrals as left (or right) co-Frobenius, QcF, semiperfect or with nonzero rational dual, as well as the uniqueness of integrals and a short proof of the bijectivity of the antipode for such Hopf algebras all follow as a consequence of these results. This gives a purely representation theoretic approach to many of the basic fundamental results in the theory of Hopf algebras. Furthermore, we introduce a general concept of Frobenius algebra, which makes sense for infinite dimensional and for topological algebras, and specializes to the classical notion in the finite case. This will be a topological algebra A that is isomorphic to its complete topological dual Aν. We show that A is a (quasi)Frobenius algebra if and only if A is the dual C* of a (quasi)co-Frobenius coalgebra C. We give many examples of co-Frobenius coalgebras and Hopf algebras connected to category theory, homological algebra and the newer q-homological algebra, topology or graph theory, showing the importance of the concept.


2018 ◽  
Vol 27 (07) ◽  
pp. 1841008
Author(s):  
Zbigniew Oziewicz ◽  
William Stewart Page

Frobenius algebra is formulated within the Abelian monoidal category of operad of graphs. A not necessarily associative algebra [Formula: see text] is said to be a Frobenius algebra if there exists a [Formula: see text]-module isomorphism. A new concept of a solvable Frobenius algebra is introduced: an algebra [Formula: see text] is said to be a solvable Frobenius algebra if it possesses a nonzero one-sided [Formula: see text]-module morphism with nontrivial radical. In the category of operad of graphs, we can express the necessary and sufficient conditions for an algebra to be a solvable Frobenius algebra. The notion of a solvable Frobenius algebra makes it possible to find all commutative nonassociative Frobenius algebras (Conjecture 10.1), and to find all Frobenius structures for commutative associative Frobenius algebras. Frobenius algebra allows [Formula: see text]-permuted opposite algebra to be extended to [Formula: see text]-permuted algebras.


2013 ◽  
Vol 2013 ◽  
pp. 1-25
Author(s):  
Carmen Caprau

We introduce the category of singular 2-dimensional cobordisms and show that it admits a completely algebraic description as the free symmetric monoidal category on atwin Frobenius algebra, by providing a description of this category in terms of generators and relations. A twin Frobenius algebra(C,W,z,z∗)consists of a commutative Frobenius algebraC, a symmetric Frobenius algebraW, and an algebra homomorphismz:C→Wwith dualz∗:W→C, satisfying some extra conditions. We also introduce a generalized 2-dimensional Topological Quantum Field Theory defined on singular 2-dimensional cobordisms and show that it is equivalent to a twin Frobenius algebra in a symmetric monoidal category.


2016 ◽  
Vol 19 (05) ◽  
pp. 1650047
Author(s):  
Joachim Kock ◽  
David I. Spivak

It is well known that the category of finite sets and cospans, composed by pushout, contains the universal special commutative Frobenius algebra. In this paper, we observe that the same construction yields also general commutative Frobenius algebras, if just the pushouts are changed to homotopy pushouts.


Author(s):  
Masahico Saito ◽  
Emanuele Zappala

A braided Frobenius algebra is a Frobenius algebra with a Yang–Baxter operator that commutes with the operations, that are related to diagrams of compact surfaces with boundary expressed as ribbon graphs. A heap is a ternary operation exemplified by a group with the operation [Formula: see text], that is ternary self-distributive. Hopf algebras can be endowed with the algebra version of the heap operation. Using this, we construct braided Frobenius algebras from a class of certain Hopf algebras that admit integrals and cointegrals. For these Hopf algebras we show that the heap operation induces a Yang–Baxter operator on the tensor product, which satisfies the required compatibility conditions. Diagrammatic methods are employed for proving commutativity between Yang–Baxter operators and Frobenius operations.


2020 ◽  
Vol 29 (04) ◽  
pp. 2050020
Author(s):  
Pierre Vogel

In this paper, we prove that every Khovanov homology associated to a Frobenius algebra of rank 2 can be modified in such a way as to produce a TQFT on oriented links, that is a monoidal functor from the category of cobordisms of oriented links to the homotopy category of complexes.


2006 ◽  
Vol 15 (10) ◽  
pp. 1335-1356 ◽  
Author(s):  
PAUL R. TURNER

We investigate Bar-Natan's characteristic two Khovanov link homology theory studying both the filtered and bi-graded theories. The filtered theory is computed explicitly and the bi-graded theory analysed by setting up a family of spectral sequences. The E2-pages can be described in terms of groups arising from the action of a certain endomorphism on 𝔽2-Khovanov homology. Some simple consequences are discussed.


2017 ◽  
Vol 26 (03) ◽  
pp. 1741001 ◽  
Author(s):  
Heather A. Dye ◽  
Aaron Kaestner ◽  
Louis H. Kauffman

The paper contains an essentially self-contained treatment of Khovanov homology, Khovanov–Lee homology as well as the Rasmussen invariant for virtual knots and virtual knot cobordisms which directly applies as well to classical knots and classical knot cobordisms. We give an alternate formulation for the Manturov definition [34] of Khovanov homology [25], [26] for virtual knots and links with arbitrary coefficients. This approach uses cut loci on the knot diagram to induce a conjugation operator in the Frobenius algebra. We use this to show that a large class of virtual knots with unit Jones polynomial is non-classical, proving a conjecture in [20] and [10]. We then discuss the implications of the maps induced in the aforementioned theory to the universal Frobenius algebra [27] for virtual knots. Next we show how one can apply the Karoubi envelope approach of Bar-Natan and Morrison [3] on abstract link diagrams [17] with cross cuts to construct the canonical generators of the Khovanov–Lee homology [30]. Using these canonical generators we derive a generalization of the Rasmussen invariant [39] for virtual knot cobordisms and generalize Rasmussen’s result on the slice genus for positive knots to the case of positive virtual knots. It should also be noted that this generalization of the Rasmussen invariant provides an easy to compute obstruction to knot cobordisms in [Formula: see text] in the sense of Turaev [42].


2010 ◽  
Vol 19 (11) ◽  
pp. 1471-1486
Author(s):  
MARKO STOŠIĆ

In this paper we resolve some conjectures concerning positive braid knots and almost alternating torus knots. Namely, we prove that the first Khovanov homology group of positive braid knot is trivial, as conjectured by Khovanov. Also, we generalize this result to show that the same is true in the case of Khovanov–Rozansky homology (sl(n) link homology) for any positive integer n. Moreover, by using the Khovanov homology theory, we prove the classical knot theory conjecture by Adams, that the only almost alternating torus knots are T3, 4 and T3, 5.


Sign in / Sign up

Export Citation Format

Share Document