A RELATIVISTIC MEAN FIELD THEORY FOR NUCLEAR MATTER AT T≠0

2004 ◽  
Vol 13 (07) ◽  
pp. 1177-1181
Author(s):  
ALEXANDRE MESQUITA ◽  
MOISÉS RAZEIRA ◽  
CÉSAR A. Z. VASCONCELLOS ◽  
MANFRED DILLIG ◽  
BARDO E. J. BODMANN

We study effects of temperature in hadron dense matter within a generalized relativistic mean field approach based on the naturalness of the various coupling constants of the theory, The Lagrangian density of our formulation contains the fundamental baryon octet, nonlinear self-couplings of the σ and δ meson fields coupled to the baryons and to the ω and ρ meson fields. By adjusting the model parameters, after inclusion in a consistent way of chemical equilibrium, baryon number and electric charge conservation, our model describes static bulk properties of ordinary nuclear matter and neutron stars. In the framework of the Sommerfeld approximation, we extend our approach to the T≠0 domain. The Sommerfeld approximation allows a drastic simplification of computational work while improving the capability of the theoretical analysis of the role of temperature on static properties of protoneutron stars. We perform the calculations by using our nonlinear model, which we extend by considering trapped neutrinos introduced into the formalism by fixing the lepton fraction. Integrating the Tolman–Oppenheimer–Volkoff equations we have obtained standard plots for the mass and radius of protoneutron stars as a function of the central density and temperature. Our predictions include the determination of an absolute value for the protoneutron star limiting mass at low and intermediate temperature regimes.

2004 ◽  
Vol 13 (07) ◽  
pp. 1519-1524 ◽  
Author(s):  
VERÔNICA A. DEXHEIMER ◽  
CÉSAR A. Z. VASCONCELLOS ◽  
MOISÉS RAZEIRA ◽  
MANFRED DILLIG

For the nuclear many body problem at high densities, formulated in the framework of a relativistic mean-field theory, we investigate in detail the compression modulus of nuclear matter as a function of the effective nucleon mass. We include consistently in our modelling chemical equilibrium as well as baryon number and electric charge conservation and investigate properties of neutron stars. Among other predictions we focus on the dependence of the maximum mass of a sequence of neutron stars as a function of the compression modulus and the nucleon effective mass.


2000 ◽  
Vol 15 (24) ◽  
pp. 1529-1537 ◽  
Author(s):  
J. C. T. DE OLIVEIRA ◽  
M. KYOTOKU ◽  
M. CHIAPPARINI ◽  
H. RODRIGUES ◽  
S. B. DUARTE

In the context of a relativistic mean field theory the delta-resonance matter formation in a highly compressed nuclear medium is investigated. For a given set of nucleon–meson coupling constants, the delta-resonance formation is studied by changing the delta-meson coupling constants. The effect on the equation of state and on the delta-resonance population with respect to changes in the delta-resonance coupling constants values is discussed for very asymmetric and quasi-symmetric nuclear matter, as an extension of works restricted to the symmetric nuclear matter treatment.5,6


2000 ◽  
Vol 15 (29) ◽  
pp. 1789-1800 ◽  
Author(s):  
A. R. TAURINES ◽  
C. A. Z. VASCONCELLOS ◽  
M. MALHEIRO ◽  
M. CHIAPPARINI

We investigate static properties of nuclear and neutron star matter by using a relativistic mean field theory with parametrized couplings. With a suitable choice of mathematical parameters, the couplings allow one to reproduce results of current quantum hadrodynamics models. For other parametrizations, a better description of bulk properties of nuclear matter is obtained. The formalism is extended to include hyperon and lepton degrees of freedom, and an analysis on the effects of the phenomenological couplings in the fermion populations and mass of neutron stars is performed. The results show a strong similarity between the predictions of ZM-like models and those with exponential couplings. We have observed in particular an extreme sensibility of the predictions of these theories on the specific choice of the values of the binding energy of nuclear matter and saturation density. Additionally, the role of the very intense scalar meson mean field found in the interior of neutron stars in the screening of the nucleon mass is discussed.


2019 ◽  
Vol 204 ◽  
pp. 05001
Author(s):  
Stefan Gmuca ◽  
Kristian Petrík ◽  
Jozef Leja

In the present work, we have mapped the exchange Fock contributions from the Dirac–Hartree–Fock (DHF) approach for nuclear matter onto the direct Hartree terms. This results in the relativistic mean field (RMF) model with the density dependent couplings. The density dependence of the effective coupling constants thus reflects the exchange correlations. The exchange part of an energy density of the linear DHF model in dense matter is evaluated in a parameter-free closed form and, after the rearrangement of the terms, expressed as density functional.


2004 ◽  
Vol 13 (07) ◽  
pp. 1413-1418 ◽  
Author(s):  
MOISÉS RAZEIRA ◽  
CÉSAR A. Z. VASCONCELLOS

High density hadronic matter is studied in a generalized relativistic multi-baryon Lagrangian density mean field approach which contains nonlinear couplings of the σ, ω, ϱ fields. We compare the predictions of our model with estimates obtained within a phenomenological naive dimensional analysis based on the naturalness of the coefficients of the theory. Upon adjusting the model parameters to describe bulk static properties of ordinary nuclear matter, we show that our approach represents a natural modelling of nuclear matter under the extreme conditions of density as the ones found in the interior of neutron stars. Moreover, we show that naturalness play a major role in effective field theory and, in combination with experiment, could represent a relevant criterium to select a model among others in the description of global static properties of neutron stars.


1997 ◽  
Vol 391 (3-4) ◽  
pp. 255-260 ◽  
Author(s):  
Amand Faessler ◽  
A.J. Buchmann ◽  
M.I. Krivoruchenko ◽  
B.V. Martemyanov

Sign in / Sign up

Export Citation Format

Share Document