GRAVITATIONAL WAVEFORMS FOR BINARY BLACK HOLES

2011 ◽  
Vol 20 (10) ◽  
pp. 2081-2086
Author(s):  
BALA R IYER

Over the last decade gravitational waveforms of binary black holes have been investigated using a variety of approaches like the Multipolar post-Minkowskian formalism, Numerical Relativity and the Effective-One-Body method. We review these complementary approaches and summarize the current status of these investigations of relevance to construct the best templates for the next generation Advanced gravitational wave detectors.

2017 ◽  
Vol 95 (6) ◽  
Author(s):  
Salvatore Vitale ◽  
Ryan Lynch ◽  
Vivien Raymond ◽  
Riccardo Sturani ◽  
John Veitch ◽  
...  

2017 ◽  
Vol 96 (2) ◽  
Author(s):  
David Keitel ◽  
Xisco Jiménez Forteza ◽  
Sascha Husa ◽  
Lionel London ◽  
Sebastiano Bernuzzi ◽  
...  

2021 ◽  
Vol 2021 (11) ◽  
pp. 039
Author(s):  
Valerio De Luca ◽  
Gabriele Franciolini ◽  
Paolo Pani ◽  
Antonio Riotto

Abstract The next generation of gravitational-wave experiments, such as Einstein Telescope, Cosmic Explorer and LISA, will test the primordial black hole scenario. We provide a forecast for the minimum testable value of the abundance of primordial black holes as a function of their masses for both the unclustered and clustered spatial distributions at formation. In particular, we show that these instruments may test abundances, relative to the dark matter, as low as 10-10.


Author(s):  
Manuel Arca Sedda ◽  
Christopher P. L. Berry ◽  
Karan Jani ◽  
Pau Amaro-Seoane ◽  
Pierre Auclair ◽  
...  

AbstractSince 2015 the gravitational-wave observations of LIGO and Virgo have transformed our understanding of compact-object binaries. In the years to come, ground-based gravitational-wave observatories such as LIGO, Virgo, and their successors will increase in sensitivity, discovering thousands of stellar-mass binaries. In the 2030s, the space-based LISA will provide gravitational-wave observations of massive black holes binaries. Between the $\sim 10$ ∼ 10 –103 Hz band of ground-based observatories and the $\sim 10^{-4}$ ∼ 1 0 − 4 –10− 1 Hz band of LISA lies the uncharted decihertz gravitational-wave band. We propose a Decihertz Observatory to study this frequency range, and to complement observations made by other detectors. Decihertz observatories are well suited to observation of intermediate-mass ($\sim 10^{2}$ ∼ 1 0 2 –104M⊙) black holes; they will be able to detect stellar-mass binaries days to years before they merge, providing early warning of nearby binary neutron star mergers and measurements of the eccentricity of binary black holes, and they will enable new tests of general relativity and the Standard Model of particle physics. Here we summarise how a Decihertz Observatory could provide unique insights into how black holes form and evolve across cosmic time, improve prospects for both multimessenger astronomy and multiband gravitational-wave astronomy, and enable new probes of gravity, particle physics and cosmology.


2021 ◽  
Vol 103 (6) ◽  
Author(s):  
Vijay Varma ◽  
Matthew Mould ◽  
Davide Gerosa ◽  
Mark A. Scheel ◽  
Lawrence E. Kidder ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document