intermediate mass
Recently Published Documents


TOTAL DOCUMENTS

1507
(FIVE YEARS 213)

H-INDEX

85
(FIVE YEARS 11)

2022 ◽  
Vol 924 (2) ◽  
pp. 79
Author(s):  
Héctor Estellés ◽  
Sascha Husa ◽  
Marta Colleoni ◽  
Maite Mateu-Lucena ◽  
Maria de Lluc Planas ◽  
...  

Abstract In this paper we present an extensive analysis of the GW190521 gravitational wave event with the current (fourth) generation of phenomenological waveform models for binary black hole coalescences. GW190521 stands out from other events since only a few wave cycles are observable. This leads to a number of challenges, one being that such short signals are prone to not resolving approximate waveform degeneracies, which may result in multimodal posterior distributions. The family of waveform models we use includes a new fast time-domain model (IMRPhenomTPHM), which allows us to extensively test different priors and robustness with respect to variations in the waveform model, including the content of spherical harmonic modes. We clarify some issues raised in a recent paper, Nitz & Capano, associated with possible support for a high-mass-ratio source, but confirm their finding of a multimodal posterior distribution, albeit with important differences in the statistical significance of the peaks. In particular, we find that the support for both masses being outside the pair instability supernova mass gap, and the support for an intermediate-mass-ratio binary are drastically reduced with respect to what Nitz & Capano found. We also provide updated probabilities for associating GW190521 to the potential electromagnetic counterpart from the Zwicky Transient Facility (ZTF) Graham et al.


2022 ◽  
Vol 924 (1) ◽  
pp. 35
Author(s):  
Liping Li ◽  
Jujia Zhang ◽  
Benzhong Dai ◽  
Wenxiong Li ◽  
Xiaofeng Wang ◽  
...  

Abstract We present optical and ultraviolet (UV) observations of a luminous type Ia supernova (SN Ia) SN 2015bq characterized by early flux excess. This SN reaches a B-band absolute magnitude at M B = −19.68 ± 0.41 mag and a peak bolometric luminosity at L = (1.75 ± 0.37) × 1043 erg s−1, with a relatively small post-maximum decline rate [Δm 15(B) = 0.82 ± 0.05 mag]. The flux excess observed in the light curves of SN 2015bq a few days after the explosion, especially seen in the UV bands, might be due to the radioactive decay of 56Ni mixed into the surface. The radiation from the decay of the surface 56Ni heats the outer layer of this SN. It produces blue U − B color followed by monotonically reddening in the early phase, dominated iron-group lines, and weak intermediate-mass element absorption features in the early spectra. The scenario of enhanced 56Ni in the surface is consistent with a large amount of 56Ni ( M 56 Ni = 0.97 ± 0.20 M ☉) synthesized during the explosion. The properties of SN 2015bq are found to locate between SN 1991T and SN 1999aa, suggesting the latter two subclasses of SNe Ia may have a common origin.


2022 ◽  
Vol 924 (1) ◽  
pp. 39
Author(s):  
Ajit Kumar Mehta ◽  
Alessandra Buonanno ◽  
Jonathan Gair ◽  
M. Coleman Miller ◽  
Ebraheem Farag ◽  
...  

Abstract Using ground-based gravitational-wave detectors, we probe the mass function of intermediate-mass black holes (IMBHs) wherein we also include BHs in the upper mass gap at ∼60–130 M ⊙. Employing the projected sensitivity of the upcoming LIGO and Virgo fourth observing run (O4), we perform Bayesian analysis on quasi-circular nonprecessing, spinning IMBH binaries (IMBHBs) with total masses 50–500 M ⊙, mass ratios 1.25, 4, and 10, and dimensionless spins up to 0.95, and estimate the precision with which the source-frame parameters can be measured. We find that, at 2σ, the mass of the heavier component of IMBHBs can be constrained with an uncertainty of ∼10%–40% at a signal-to-noise ratio of 20. Focusing on the stellar-mass gap with new tabulations of the 12C(α, γ)16O reaction rate and its uncertainties, we evolve massive helium core stars using MESA to establish the lower and upper edges of the mass gap as ≃ 59 − 13 + 34 M ⊙ and ≃ 139 − 14 + 30 M ⊙ respectively, where the error bars give the mass range that follows from the ±3σ uncertainty in the 12C(α, γ)16O nuclear reaction rate. We find that high resolution of the tabulated reaction rate and fine temporal resolution are necessary to resolve the peak of the BH mass spectrum. We then study IMBHBs with components lying in the mass gap and show that the O4 run will be able to robustly identify most such systems. Finally, we reanalyze GW190521 with a state-of-the-art aligned-spin waveform model, finding that the primary mass lies in the mass gap with 90% credibility.


Author(s):  
M. el Akel ◽  
L. E. Kristensen ◽  
R. LeGal ◽  
R. L. Pitts ◽  
S. J. van der Walt ◽  
...  
Keyword(s):  

Author(s):  
C. R. Argüelles ◽  
E. A. Becerra-Vergara ◽  
A. Krut ◽  
R. Yunis ◽  
J. A. Rueda ◽  
...  

We study the nonlinear structure formation in cosmology accounting for the quantum nature of the dark matter (DM) particles in the initial conditions at decoupling, as well as in the relaxation and stability of the DM halos. Different from cosmological N-body simulations, we use a thermodynamic approach for collisionless systems of self-gravitating fermions in general relativity, in which the halos reach the steady state by maximizing a coarse-grained entropy. We show the ability of this approach to provide answers to crucial open problems in cosmology, among others: the mass and nature of the DM particle, the formation and nature of supermassive black holes in the early Universe, the nature of the intermediate mass black holes in small halos, and the core-cusp problem.


2021 ◽  
Vol 104 (12) ◽  
Author(s):  
Robert Brandenberger ◽  
Bryce Cyr ◽  
Hao Jiao

2021 ◽  
Vol 923 (2) ◽  
pp. 246
Author(s):  
Alister W. Graham ◽  
Roberto Soria ◽  
Benjamin L. Davis ◽  
Mari Kolehmainen ◽  
Thomas Maccarone ◽  
...  

Abstract Building upon three late-type galaxies in the Virgo cluster with both a predicted black hole mass of less than ∼105 M ⊙ and a centrally located X-ray point source, we reveal 11 more such galaxies, more than tripling the number of active intermediate-mass black hole candidates among this population. Moreover, this amounts to a ∼36 ± 8% X-ray detection rate (despite the sometimes high, X-ray-absorbing, H i column densities), compared to just 10 ± 5% for (the largely H i-free) dwarf early-type galaxies in the Virgo cluster. The expected contribution of X-ray binaries from the galaxies’ inner field stars is negligible. Moreover, given that both the spiral and dwarf galaxies contain nuclear star clusters, the above inequality appears to disfavor X-ray binaries in nuclear star clusters. The higher occupation, or rather detection, fraction among the spiral galaxies may instead reflect an enhanced cool gas/fuel supply and Eddington ratio. Indeed, four of the 11 new X-ray detections are associated with known LINERs or LINER/H ii composites. For all (four) of the new detections for which the X-ray flux was strong enough to establish the spectral energy distribution in the Chandra band, it is consistent with power-law spectra. Furthermore, the X-ray emission from the source with the highest flux (NGC 4197: L X ≈ 1040 erg s−1) suggests a non-stellar-mass black hole if the X-ray spectrum corresponds to the “low/hard state”. Follow-up observations to further probe the black hole masses, and prospects for spatially resolving the gravitational spheres of influence around intermediate-mass black holes, are reviewed in some detail.


2021 ◽  
Vol 104 (12) ◽  
Author(s):  
Mekhi Dhesi ◽  
Hannes R. Rüter ◽  
Adam Pound ◽  
Leor Barack ◽  
Harald P. Pfeiffer

2021 ◽  
Vol 921 (2) ◽  
pp. 98
Author(s):  
Hojin Cho ◽  
Jong-Hak Woo ◽  
Tommaso Treu ◽  
Peter R. Williams ◽  
Stephen F. Armen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document