scholarly journals PARITY VIOLATION AND ELECTRIC DIPOLE MOMENTS IN ATOMS AND MOLECULES

2012 ◽  
Vol 21 (11) ◽  
pp. 1230010 ◽  
Author(s):  
V. A. DZUBA ◽  
V. V. FLAMBAUM

We review the current status of the study of parity and time invariance violation in atoms, nuclei and molecules. We focus on parity nonconservation (PNC) in cesium (CS) and three of the most promising areas of research: (i) PNC in a chain of isotopes, (ii) search for nuclear anapole moments, and (iii) search for permanent electric dipole moments (EDMs) of atoms and molecules, which in turn are caused by either an electron EDM or nuclear T, P-odd moments such as a nuclear EDM or nuclear Schiff moment.

2020 ◽  
Vol 234 ◽  
pp. 01007
Author(s):  
Klaus Kirch ◽  
Philipp Schmidt-Wellenburg

Searches for permanent electric dipole moments of fundamental particles and systems with spin are the experiments most sensitive to new CP violating physics and a top priority of a growing international community. We briefly review the current status of the field emphasizing on the charged leptons and lightest baryons.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Motoko Fujiwara ◽  
Junji Hisano ◽  
Chihiro Kanai ◽  
Takashi Toma

Abstract Electric dipole moments (EDMs) of charged leptons arise from a new source of CP violation in the lepton sector. In this paper, we calculate the EDMs of the charged leptons in the minimal scotogenic model with two singlet fermions, and the models extended with one or two triplet fermions instead of the singlet fermions, taking into account the constraints of the neutrino oscillation data, the charged lepton flavor violation and perturbative unitarity bound for the Yukawa couplings. We show that the hybrid model with one singlet and one triplet fermions predicts an electron EDM larger than the other models in both normal and inverted neutrino mass hierarchy. We find some parameter space has already been ruled out by the current upper bound of the electron EDM and further parameter space can be explored by future experiments.


2021 ◽  
Vol 2021 (10) ◽  
Author(s):  
Yuichiro Nakai ◽  
Matthew Reece ◽  
Motoo Suzuki

Abstract Hierarchical masses of quarks and leptons are addressed by imposing horizontal symmetries. In supersymmetric Standard Models, the same symmetries play a role in suppressing flavor violating processes induced by supersymmetric particles. Combining the idea of spontaneous CP violation to control contributions to electric dipole moments (EDMs), the mass scale of supersymmetric particles can be lowered. We present supersymmetric models with U(1) horizontal symmetries and discuss CP and flavor constraints. Models with two U(1) symmetries are found to give a viable solution to the muon g − 2 anomaly. Interestingly, the parameter space to explain the anomaly will be probed by future electron EDM experiments.


Particles ◽  
2020 ◽  
Vol 3 (4) ◽  
pp. 719-728
Author(s):  
Dmitri V. Kirpichnikov ◽  
Valery E. Lyubovitskij ◽  
Alexey S. Zhevlakov

We discuss constraints on soft CP-violating couplings of axion-like particles with photon and fermions by using data on electric dipole moments of standard model particles. In particular, for the axion-like particle (ALP) leptophilic scenario, we derive bounds on CP-odd ALP-photon-photon coupling from data of the ACME collaboration on electron EDM. We also discuss prospects of the storage ring experiment to constrain the ALP–photon–photon coupling from data on proton EDM for the simplified hadrophilic interactions of ALP. The resulting constraints from experimental bounds on the muon and neutron EDMs are weak. We set constraint on the CP-odd ALP coupling with electron and derive bounds on combinations of coupling constants, which involve soft CP-violating terms.


Sign in / Sign up

Export Citation Format

Share Document