Topological phase transition in asymmetric nuclear matter

2014 ◽  
Vol 23 (05) ◽  
pp. 1450031
Author(s):  
Tran Huu Phat ◽  
Nguyen Van Thu

Starting from an effective model of asymmetric nuclear matter we show that at finite temperature T and baryon chemical potential μB there exists a topological phase transition from state of non-Fermi liquid to that of Fermi liquid which is protected by winding numbers. At low μB the transition is first-order, then extends to a second-order phase transition at larger μB through a tri-critical point. The isospin dependences of the tri-critical point and the phase diagram in the (T, μB)-plane are established. The distinction between this type of phase transition and the similar phenomenon caused by the Silver Blaze property (SBP) at T = 0 is confirmed for isospin varying from 0 to 1. We reveal that the topological phase transition could emerge in a large class of nuclear theories.

2015 ◽  
Vol 24 (03) ◽  
pp. 1550021
Author(s):  
Tran Huu Phat ◽  
Nguyen Tuan Anh ◽  
Phung Thi Thu Ha

The topological phase transition is studied systematically within an effective model of Quantum Chromodynamics (QCD) where the chiral symmetry, broken at zero temperature, is not restored at high temperature and/or baryon chemical potential. It is found that during phase transition the system undergoes a first-order transition from the nonFermi liquid state to the Fermi liquid state which is protected by topology of the Fermi sphere. The phase diagram of the transition in the plane of temperature and baryon chemical potential is established. The critical behaviors of various equations of state are determined.


2013 ◽  
Vol 22 (11) ◽  
pp. 1350077 ◽  
Author(s):  
TRAN HUU PHAT ◽  
NGUYEN TUAN ANH ◽  
PHUNG THI THU HA

We study systematically various types of phase transitions in nuclear matter at finite temperature T and baryon chemical potential μ based on the extended linear sigma model with nucleon degrees of freedom. It is shown that there are three types of phase transitions in nuclear matter: the chiral symmetry nonrestoration (SNR) at high temperature, the well-known liquid–gas (LG) phase transition at sub-saturation density and the Lifshitz phase transition (LPT) from the fully-gapped state to the state with Fermi surface. Their phase diagrams are established in the (T, μ)-plane and their physical properties are investigated in detail. The relationship between the chiral phase transition and the LG phase transition in nuclear matter is discussed.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Milad Jangjan ◽  
Mir Vahid Hosseini

AbstractWe theoretically report the finding of a new kind of topological phase transition between a normal insulator and a topological metal state where the closing-reopening of bandgap is accompanied by passing the Fermi level through an additional band. The resulting nontrivial topological metal phase is characterized by stable zero-energy localized edge states that exist within the full gapless bulk states. Such states living on a quasi-one-dimensional system with three sublattices per unit cell are protected by hidden inversion symmetry. While other required symmetries such as chiral, particle-hole, or full inversion symmetry are absent in the system.


2021 ◽  
Vol 126 (1) ◽  
Author(s):  
Niraj Aryal ◽  
Xilian Jin ◽  
Q. Li ◽  
A. M. Tsvelik ◽  
Weiguo Yin

Sign in / Sign up

Export Citation Format

Share Document