pisot numbers
Recently Published Documents


TOTAL DOCUMENTS

93
(FIVE YEARS 10)

H-INDEX

11
(FIVE YEARS 1)

2021 ◽  
Vol 380 ◽  
pp. 107547
Author(s):  
Shigeki Akiyama ◽  
Hajime Kaneko

Author(s):  
Kevin G. Hare ◽  
Nikita Sidorov

In this paper, we investigate the Galois conjugates of a Pisot number [Formula: see text], [Formula: see text]. In particular, we conjecture that for [Formula: see text] we have [Formula: see text] for all conjugates [Formula: see text] of [Formula: see text]. Further, for [Formula: see text], we conjecture that for all Pisot numbers [Formula: see text] we have [Formula: see text]. A similar conjecture if made for [Formula: see text]. We conjecture that all of these bounds are tight. We provide partial supporting evidence for this conjecture. This evidence is both of a theoretical and computational nature. Lastly, we connect this conjecture to a result on the dimension of Bernoulli convolutions parameterized by [Formula: see text], whose conjugate is the reciprocal of a Pisot number.


Mathematics ◽  
2020 ◽  
Vol 8 (6) ◽  
pp. 903
Author(s):  
Blaine Quackenbush ◽  
Tony Samuel ◽  
Matt West

The subshift of finite type property (also known as the Markov property) is ubiquitous in dynamical systems and the simplest and most widely studied class of dynamical systems are β -shifts, namely transformations of the form T β , α : x ↦ β x + α mod 1 acting on [ − α / ( β − 1 ) , ( 1 − α ) / ( β − 1 ) ] , where ( β , α ) ∈ Δ is fixed and where Δ ≔ { ( β , α ) ∈ R 2 : β ∈ ( 1 , 2 ) and 0 ≤ α ≤ 2 − β } . Recently, it was shown, by Li et al. (Proc. Amer. Math. Soc. 147(5): 2045–2055, 2019), that the set of ( β , α ) such that T β , α has the subshift of finite type property is dense in the parameter space Δ . Here, they proposed the following question. Given a fixed β ∈ ( 1 , 2 ) which is the n-th root of a Perron number, does there exists a dense set of α in the fiber { β } × ( 0 , 2 − β ) , so that T β , α has the subshift of finite type property? We answer this question in the positive for a class of Pisot numbers. Further, we investigate if this question holds true when replacing the subshift of finite type property by the sofic property (that is a factor of a subshift of finite type). In doing so we generalise, a classical result of Schmidt (Bull. London Math. Soc., 12(4): 269–278, 1980) from the case when α = 0 to the case when α ∈ ( 0 , 2 − β ) . That is, we examine the structure of the set of eventually periodic points of T β , α when β is a Pisot number and when β is the n-th root of a Pisot number.


Symmetry ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 809
Author(s):  
Milica Anđelić ◽  
Dejan Živković

The line graph of a graph G is another graph of which the vertex set corresponds to the edge set of G, and two vertices of the line graph of G are adjacent if the corresponding edges in G share a common vertex. A graph is reflexive if the second-largest eigenvalue of its adjacency matrix is no greater than 2. Reflexive graphs give combinatorial ground to generate two classes of algebraic numbers, Salem and Pisot numbers. The difficult question of identifying those graphs whose line graphs are reflexive (called L-reflexive graphs) is naturally attacked by first answering this question for trees. Even then, however, an elegant full characterization of reflexive line graphs of trees has proved to be quite formidable. In this paper, we present an efficient algorithm for the exhaustive generation of maximal L-reflexive trees.


2020 ◽  
Vol 194 (4) ◽  
pp. 383-392
Author(s):  
Toufik Zaïmi
Keyword(s):  

Author(s):  
KATHRYN E. HARE ◽  
SASCHA TROSCHEIT

Abstract In analogy with the lower Assouad dimensions of a set, we study the lower Assouad dimensions of a measure. As with the upper Assouad dimensions, the lower Assouad dimensions of a measure provide information about the extreme local behaviour of the measure. We study the connection with other dimensions and with regularity properties. In particular, the quasi-lower Assouad dimension is dominated by the infimum of the measure’s lower local dimensions. Although strict inequality is possible in general, equality holds for the class of self-similar measures of finite type. This class includes all self-similar, equicontractive measures satisfying the open set condition, as well as certain “overlapping” self-similar measures, such as Bernoulli convolutions with contraction factors that are inverses of Pisot numbers. We give lower bounds for the lower Assouad dimension for measures arising from a Moran construction, prove that self-affine measures are uniformly perfect and have positive lower Assouad dimension, prove that the Assouad spectrum of a measure converges to its quasi-Assouad dimension and show that coincidence of the upper and lower Assouad dimension of a measure does not imply that the measure is s-regular.


2019 ◽  
Vol 40 (12) ◽  
pp. 3169-3180
Author(s):  
SHIGEKI AKIYAMA ◽  
HAJIME KANEKO ◽  
DONG HAN KIM

Let $\unicode[STIX]{x1D6FD}>1$ be an integer or, generally, a Pisot number. Put $T(x)=\{\unicode[STIX]{x1D6FD}x\}$ on $[0,1]$ and let $S:[0,1]\rightarrow [0,1]$ be a piecewise linear transformation whose slopes have the form $\pm \unicode[STIX]{x1D6FD}^{m}$ with positive integers $m$. We give a sufficient condition for $T$ and $S$ to have the same generic points. We also give an uncountable family of maps which share the same set of generic points.


Sign in / Sign up

Export Citation Format

Share Document