CRYPTANALYSIS ON SECURE FRACTAL IMAGE CODING BASED ON FRACTAL PARAMETER ENCRYPTION

Fractals ◽  
2012 ◽  
Vol 20 (01) ◽  
pp. 41-51 ◽  
Author(s):  
CHING-HUNG YUEN ◽  
KWOK-WO WONG

The vulnerabilities of the selective encryption scheme for fractal image coding proposed by Lian et al.1 are identified. By comparing multiple cipher-images of the same plain-image encrypted with different keys, the positions of unencrypted parameters in each encoded block are located. This allows the adversary to recover the encrypted depth of the quadtree by observing the length of each matched domain block. With this depth information and the unencrypted parameters, the adversary is able to reconstruct an intelligent image. Experimental results show that some standard test images can be successfully decoded and recognized by replacing the encrypted contrast scaling factor and brightness offset with specific values. Some remedial approaches are suggested to enhance the security of the scheme.

2014 ◽  
Vol 69 (10-11) ◽  
pp. 511-520
Author(s):  
Xing-Yuan Wang ◽  
Dou-Dou Zhang ◽  
Na Wei

AbstractA novel fractal image coding algorithm based on domain blocks sorting strategies and modified no search scheme is proposed in this paper. On one hand, in order to improve the encoding time, a modified no search (MNS) scheme is adopted. Firstly, the image is divided into blocks of different size utilizing an adaptive quadtree partition method. Secondly, one finds the location of the best matching domain block using the MNS scheme for the range blocks, whose sizes are larger than the preset minimum value. Thirdly, the types of the range block and domain block are computed employing the proposed approach, and then the corresponding computation of mean square error (MSE) is determined. The computation of the MSE is reduced and the encoding phase speeds up. On the other hand, the range blocks with the minimal sizes are encoded applying the proposed domain blocks sorting (DBS) method. Contrast experiment results show that the proposed algorithm can obtain good quality of the reconstructed images and shorten the encoding time significantly.


Author(s):  
Shen Furao ◽  
◽  
Osamu Hasegawa ◽  

The main shortcomings of fractal image coders are (1) the slow speed for searching domain block pool, and (2) known fast algorithms leading to a loss of image quality. We propose efficient fractal image coding using simulated annealing method. Compared to previous schemes, our proposal greatly increases the search speed of domain block pool with almost no image quality loss. Experimental results indicate the high feasibility of the proposed method, which is, furthermore, extendable to other fractal coders.


Fractals ◽  
2009 ◽  
Vol 17 (04) ◽  
pp. 451-457 ◽  
Author(s):  
XING-YUAN WANG ◽  
FAN-PING LI ◽  
ZHI-FENG CHEN

This paper presents a fast fractal image coding method based on quadtree division, improved neighbor search and asymptotic strategy. We search the optimal matched domain block of a range block in its five nearest neighbor blocks and make asymptotic moves along the direction of potential optimal solution. If the optimal solution can not be improved, we carry out quadtree division for this range block until it caters to our demand or reaches greatest division level. The experimental results show that the coding speed of the proposed method declined slightly, but it has a better quality of reconstructed image and higher compression ratio in comparisons with no search method.


2012 ◽  
Vol 532-533 ◽  
pp. 1157-1161
Author(s):  
Hong Tao Hu ◽  
Qi Fei Liu

The goal of image compression is to represent an image with as few number of bits as possible while keeping the quality of the original image. With the characteristics of higher compression ratio, fractal image coding has received much attention recently. However, conventional fractal compression approach needs more time to code the original image. In order to overcome the time-consuming issue, a Quadtree-based partitioning and matching scheme is proposed. During the partitioning phase, an image frame is partitioned into tree-structural segments. And during a matching phase, a rang block only searches its corresponding domain block around previous matched domain block. Such local matching procedures will not stop until a predefined matching threshold is obtained. The preliminary experimental results show that such sub-matching rather than a global matching scheme dramatically decreases the matching complexity, while preserving the quality of an approximate image to the original after decoding process. In particular, the proposed scheme improves the coding process up to 2 times against the conventional fractal image coding approach.


Fractals ◽  
2019 ◽  
Vol 27 (07) ◽  
pp. 1950119
Author(s):  
CHEN XU ◽  
YUTING YE ◽  
ZHENWEI HU ◽  
YURU ZOU ◽  
LIXIN SHEN ◽  
...  

The essence of Huber fractal image coding (HFIC) is to predict the fractal code of a noiseless image as accurately as possible from its corrupted observation with outliers by adopting Huber M-estimation technique. However, the traditional HFIC is not quite satisfactory mainly due to the absence of contractivity restriction for the estimate of the fractal parameters (actually, it is a fundamental requirement in the theory of fractal image coding). In this paper, we introduce a primal-dual algorithm for robust fractal image coding (PD-RFIC), which formulates the problem of robust prediction of the fractal parameters with contractivity condition as a constrained optimization model and then adopts a primal-dual algorithm to solve it. Furthermore, in order to relieve using the corrupted domain block as the independent variable in the proposed method, instead of using the mean operation on a [Formula: see text] subblock in the traditional HFIC, we apply a median operation on a larger subblock to obtain the contracted domain blocks for achieving the robustness against outliers. The effectiveness of the proposed method is experimentally illustrated on problems of image denoising with impulse noise (specifically, salt & pepper noise and random-valued noise). Remarkable improvements of the proposed method over conventional HFIC are demonstrated in terms of both numerical evaluations and visual quality. In addition, a median-based version of Fisher classification method is also developed to accelerate the encoding speed of the proposed method.


Fractals ◽  
2009 ◽  
Vol 17 (02) ◽  
pp. 149-160 ◽  
Author(s):  
SHIGUO LIAN ◽  
XI CHEN ◽  
DENGPAN YE

In recent work, various fractal image coding methods are reported, which adopt the self-similarity of images to compress the size of images. However, till now, no solutions for the security of fractal encoded images have been provided. In this paper, a secure fractal image coding scheme is proposed and evaluated, which encrypts some of the fractal parameters during fractal encoding, and thus, produces the encrypted and encoded image. The encrypted image can only be recovered by the correct key. To maintain security and efficiency, only the suitable parameters are selected and encrypted through investigating the properties of various fractal parameters, including parameter space, parameter distribution and parameter sensitivity. The encryption process does not change the file format, keeps secure in perception, and costs little time or computational resources. These properties make it suitable for secure image encoding or transmission.


Sign in / Sign up

Export Citation Format

Share Document