scholarly journals Option Pricing Using Stochastic Volatility Model under Fourier Transform of Nonlinear Differential Equation

Fractals ◽  
2021 ◽  
Author(s):  
Zhichao Liu ◽  
Yuncheng Wang ◽  
Ya Cheng ◽  
Tareq Saeed ◽  
Yong Ye
2010 ◽  
Vol 2010 ◽  
pp. 1-18 ◽  
Author(s):  
Alexandre F. Roch

We study the valuation of American-type derivatives in the stochastic volatility model of Barndorff-Nielsen and Shephard (2001). We characterize the value of such derivatives as the unique viscosity solution of an integral-partial differential equation when the payoff function satisfies a Lipschitz condition.


2021 ◽  
Vol 63 ◽  
pp. 123-142
Author(s):  
Yuecai Han ◽  
Zheng Li ◽  
Chunyang Liu

We investigate the European call option pricing problem under the fractional stochastic volatility model. The stochastic volatility model is driven by both fractional Brownian motion and standard Brownian motion. We obtain an analytical solution of the European option price via the Itô’s formula for fractional Brownian motion, Malliavin calculus, derivative replication and the fundamental solution method. Some numerical simulations are given to illustrate the impact of parameters on option prices, and the results of comparison with other models are presented. doi:10.1017/S1446181121000225


2016 ◽  
Vol 19 (02) ◽  
pp. 1650014 ◽  
Author(s):  
INDRANIL SENGUPTA

In this paper, a class of generalized Barndorff-Nielsen and Shephard (BN–S) models is investigated from the viewpoint of derivative asset analysis. Incompleteness of this type of markets is studied in terms of equivalent martingale measures (EMM). Variance process is studied in details for the case of Inverse-Gaussian distribution. Various structure preserving subclasses of EMMs are derived. The model is then effectively used for pricing European style options and fitting implied volatility smiles.


2019 ◽  
Vol 38 (4) ◽  
pp. 856-871 ◽  
Author(s):  
Giacomo Bormetti ◽  
Roberto Casarin ◽  
Fulvio Corsi ◽  
Giulia Livieri

2008 ◽  
Vol 40 (01) ◽  
pp. 144-162 ◽  
Author(s):  
Elisa Alòs ◽  
Christian-Oliver Ewald

We prove that the Heston volatility is Malliavin differentiable under the classical Novikov condition and give an explicit expression for the derivative. This result guarantees the applicability of Malliavin calculus in the framework of the Heston stochastic volatility model. Furthermore, we derive conditions on the parameters which assure the existence of the second Malliavin derivative of the Heston volatility. This allows us to apply recent results of Alòs (2006) in order to derive approximate option pricing formulae in the context of the Heston model. Numerical results are given.


2021 ◽  
pp. 1-20
Author(s):  
Y. HAN ◽  
Z. LI ◽  
C. LIU

Abstract We investigate the European call option pricing problem under the fractional stochastic volatility model. The stochastic volatility model is driven by both fractional Brownian motion and standard Brownian motion. We obtain an analytical solution of the European option price via the Itô’s formula for fractional Brownian motion, Malliavin calculus, derivative replication and the fundamental solution method. Some numerical simulations are given to illustrate the impact of parameters on option prices, and the results of comparison with other models are presented.


Sign in / Sign up

Export Citation Format

Share Document