american option pricing
Recently Published Documents


TOTAL DOCUMENTS

152
(FIVE YEARS 31)

H-INDEX

17
(FIVE YEARS 2)

Author(s):  
Kexin Chen ◽  
Junkee Jeon ◽  
Hoi Ying Wong

The optimal retirement decision is an optimal stopping problem when retirement is irreversible. We investigate the optimal consumption, investment, and retirement decisions when the mean return of a risky asset is unobservable and is estimated by filtering from historical prices. To ensure nonnegativity of the consumption rate and the borrowing constraints on the wealth process of the representative agent, we conduct our analysis using a duality approach. We link the dual problem to American option pricing with stochastic volatility and prove that the duality gap is closed. We then apply our theory to a hidden Markov model for regime-switching mean return with Bayesian learning. We fully characterize the existence and uniqueness of variational inequality in the dual optimal stopping problem, as well as the free boundary of the problem. An asymptotic closed-form solution is derived for optimal retirement timing by small-scale perturbation. We discuss the potential applications of the results to other partial-information settings.


Wilmott ◽  
2021 ◽  
Vol 2021 (116) ◽  
pp. 30-41
Author(s):  
Leif Andersen ◽  
Mark Lake

2021 ◽  
Vol 19 (3) ◽  
pp. 85-109
Author(s):  
Jingying Lin ◽  
Caio Almeida

Pricing American options accurately is of great theoretical and practical importance. We propose using machine learning methods, including support vector regression and classification and regression trees. These more advanced techniques extend the traditional Longstaff-Schwartz approach, replacing the OLS regression step in the Monte Carlo simulation. We apply our approach to both simulated data and market data from the S&P 500 Index option market in 2019. Our results suggest that support vector regression can be an alternative to the existing OLS-based pricing method, requiring fewer simulations and reducing the vulnerability to misspecification of basis functions.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Mohamed Maidoumi ◽  
Boubker Daafi ◽  
Mehdi Zahid

Our work is aimed at modeling the American option price by combining the dynamic programming and the optimal stopping time under two asset price models. In doing so, we attempt to control the theoretical error and illustrate the asymptotic characteristics of each model; thus, using a numerical illustration of the convergence of the option price to an equilibrium price, we can notice its behavior when the number of paths tends to be a large number; therefore, we construct a simple estimator on each slice of the number of paths according to an upper and lower bound to control our error. Finally, to highlight our approach, we test it on different asset pricing models, in particular, the exponential Lévy model compared to the simple Black and Scholes model, and we will show how the latter outperforms the former in the real market (Microsoft “MSFT” put option as an example).


2021 ◽  
Vol 14 (8) ◽  
pp. 340
Author(s):  
Francois-Michel Boire ◽  
R. Mark Reesor ◽  
Lars Stentoft

This paper proposes a new method for pricing American options that uses importance sampling to reduce estimator bias and variance in simulation-and-regression based methods. Our suggested method uses regressions under the importance measure directly, instead of under the nominal measure as is the standard, to determine the optimal early exercise strategy. Our numerical results show that this method successfully reduces the bias plaguing the standard importance sampling method across a wide range of moneyness and maturities, with negligible change to estimator variance. When a low number of paths is used, our method always improves on the standard method and reduces average root mean squared error of estimated option prices by 22.5%.


2021 ◽  
Vol 2021 ◽  
pp. 1-20
Author(s):  
Xiankang Luo ◽  
Jie Xing

This study investigates valuation of guaranteed minimum maturity benefits (GMMB) in variable annuity contract in the case where the guarantees can be surrendered at any time prior to the maturity. In the event of the option being exercised early, early surrender charges will be applied. We model the underlying mutual fund dynamics under regime-switching volatility. The valuation problem can be reduced to an American option pricing problem, which is essentially an optimal stopping problem. Then, we obtain the pricing partial differential equation by a standard Markovian argument. A detailed discussion shows that the solution of the problem involves an optimal surrender boundary. The properties of the optimal surrender boundary are given. The regime-switching Volterra-type integral equation of the optimal surrender boundary is derived by probabilistic methods. Furthermore, a sensitivity analysis is performed for the optimal surrender decision. In the end, we adopt the trinomial tree method to determine the optimal strategy.


2021 ◽  
Vol 14 (2) ◽  
pp. 77
Author(s):  
Young Shin Kim

This paper proposes the sample path generation method for the stochastic volatility version of the CGMY process. We present the Monte-Carlo method for European and American option pricing with the sample path generation and calibrate model parameters to the American style S&P 100 index options market, using the least square regression method. Moreover, we discuss path-dependent options, such as Asian and Barrier options.


Sign in / Sign up

Export Citation Format

Share Document