NUMERICAL METHODS FOR FUZZY INITIAL VALUE PROBLEMS

Author(s):  
EYKE HÜLLERMEIER

In this paper, fuzzy initial value problems for modelling aspects of uncertainty in dynamical systems are introduced and interpreted from a probabilistic point of view. Due to the uncertainty incorporated in the model, the behavior of dynamical systems modelled in this way will generally not be unique. Rather, we obtain a large set of trajectories which are more or less compatible with the description of the system. We propose so-called fuzzy reachable sets for characterizing the (fuzzy) set of solutions to a fuzzy initial value problem. Loosely spoken, a fuzzy reachable set is defined as the (fuzzy) set of possible system states at a certain point of time, with given constraints concerning the initial system state and the system evolution. The main-part of the paper is devoted to the development of the numerical methods for the approximation of such sets. Algorithms for precise as well as outer approximations are presented. It is shown that fuzzy reachable sets can be approximated to any degree of accuracy under certain assumptions. Our method is illustrated by means of an example from the field of economics.

2018 ◽  
Vol 2018 ◽  
pp. 1-7
Author(s):  
Yong-Hong Fan ◽  
Lin-Lin Wang

We propose a new algorithm for solving the terminal value problems on a q-difference equations. Through some transformations, the terminal value problems which contain the first- and second-order delta-derivatives have been changed into the corresponding initial value problems; then with the help of the methods developed by Liu and H. Jafari, the numerical solution has been obtained and the error estimate has also been considered for the terminal value problems. Some examples are given to illustrate the accuracy of the numerical methods we proposed. By comparing the exact solution with the numerical solution, we find that the convergence speed of this numerical method is very fast.


Sign in / Sign up

Export Citation Format

Share Document