Design and optimization of photonic crystal fiber with improved optical characteristics

2015 ◽  
Vol 24 (04) ◽  
pp. 1550051 ◽  
Author(s):  
S. Geerthana ◽  
A. Sivanantha Raja ◽  
D. Shanmuga Sundar

A highly birefringent photonic crystal fiber (PCF) with large nonlinearity, low dispersion and low confinement loss is designed by introducing a solid elliptical core structure with spiral lattice of circular air holes as a cladding. The dependence of different geometrical parameters, such as pitch size, diameter of air holes and arrangement of air holes are investigated. By optimizing the available parameters, the designed elliptical–spiral PCF offers high birefringence up to 0.005264, high nonlinearity up to 8683.59[Formula: see text]W[Formula: see text][Formula: see text]km[Formula: see text], low chromatic dispersion of [Formula: see text][Formula: see text]ps/nm/km, and low confinement loss of 0.00305[Formula: see text]dB/km within a wide wavelength range of 1000–2000[Formula: see text]nm.

2019 ◽  
Vol 33 (20) ◽  
pp. 1950218 ◽  
Author(s):  
Md. Khairum Monir ◽  
Mahmudul Hasan ◽  
Bikash Kumar Paul ◽  
Kawsar Ahmed ◽  
Hala J. El-Khozondar ◽  
...  

This paper proposes a novel model to attain high birefringence and low loss in a slotted core-based photonic crystal fiber (PCF) structure in THz regime. The performance of the proposed PCF has been evaluated by applying finite element method (FEM) with full simulation software COMSOL Multiphysics V-5.1. The proposed model gains good optical properties such as high birefringence of 0.24, low effective material loss (EML) of 0.03 cm[Formula: see text], low confinement loss of 6.5 × 10[Formula: see text] (dB/m), low scattering loss of 2 × 10[Formula: see text] (dB/m) and low bending loss of 7.4 × 10[Formula: see text] (dB/cm). The proposed structure also exhibits the flattened dispersion for wider frequency response. However, the real-life fabrication of the suggested model is highly feasible using the current technology due to the unique shape of circular air holes in the cladding region. The outcomes make the proposed PCF a stronger candidate for polarization-preserving applications such as sensing, communications and filtering operations in THz band.


2015 ◽  
Vol 23 (7) ◽  
pp. 8329 ◽  
Author(s):  
Tianyu Yang ◽  
Erlei Wang ◽  
Haiming Jiang ◽  
Zhijia Hu ◽  
Kang Xie

2019 ◽  
Vol 125 (9) ◽  
Author(s):  
Chunhua Jia ◽  
Ning Wang ◽  
Keyao Li ◽  
Hongzhi Jia

2022 ◽  
Vol 68 ◽  
pp. 102752
Author(s):  
Bibhatsu Kuiri ◽  
Bubai Dutta ◽  
Nilanjana Sarkar ◽  
Saikat Santra ◽  
Paulomi Mandal ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document