Diamond unit cell photonic crystal fiber with high birefringence and low confinement loss based on circular air holes

2015 ◽  
Vol 54 (20) ◽  
pp. 6140 ◽  
Author(s):  
Yong Soo Lee ◽  
Chung Ghiu Lee ◽  
Yongmin Jung ◽  
Soeun Kim
2019 ◽  
Vol 33 (20) ◽  
pp. 1950218 ◽  
Author(s):  
Md. Khairum Monir ◽  
Mahmudul Hasan ◽  
Bikash Kumar Paul ◽  
Kawsar Ahmed ◽  
Hala J. El-Khozondar ◽  
...  

This paper proposes a novel model to attain high birefringence and low loss in a slotted core-based photonic crystal fiber (PCF) structure in THz regime. The performance of the proposed PCF has been evaluated by applying finite element method (FEM) with full simulation software COMSOL Multiphysics V-5.1. The proposed model gains good optical properties such as high birefringence of 0.24, low effective material loss (EML) of 0.03 cm[Formula: see text], low confinement loss of 6.5 × 10[Formula: see text] (dB/m), low scattering loss of 2 × 10[Formula: see text] (dB/m) and low bending loss of 7.4 × 10[Formula: see text] (dB/cm). The proposed structure also exhibits the flattened dispersion for wider frequency response. However, the real-life fabrication of the suggested model is highly feasible using the current technology due to the unique shape of circular air holes in the cladding region. The outcomes make the proposed PCF a stronger candidate for polarization-preserving applications such as sensing, communications and filtering operations in THz band.


2015 ◽  
Vol 23 (7) ◽  
pp. 8329 ◽  
Author(s):  
Tianyu Yang ◽  
Erlei Wang ◽  
Haiming Jiang ◽  
Zhijia Hu ◽  
Kang Xie

2021 ◽  
Vol 10 (1) ◽  
pp. 1-5
Author(s):  
A. Abbaszadeh ◽  
S. Makouei ◽  
S. Meshgini

A new triangular photonic crystal fiber with a based microstructure core gas sensor has been proposed for the wavelength range from 1.1μm to 1.7μm. The guiding trait of the proposed structure depends on geometric parameters and wavelength, which are numerically studied by the finite element method. According to the results, the relative sensitivity obtained as high as 75.14% at 1.33μm wavelength. high birefringence and effective area are also obtained by order of 3.75×10-3 and 14.07 μm2 finally, low confinement loss of 1.41×10-2 dB/m is acquired at the same wavelength. The variation of the diameters in the cladding and core region is investigated and the results show that this structure has good stability for manufacturing goals. Since the results show the highest sensitivity at wavelengths around 1.2μm to 1.7μm, which is the absorption line of many gases such as methane (CH4), hydrogen fluoride (HF), ammonia (NH3), this gas sensor can be used for medical and industrial applications.


Photonics ◽  
2019 ◽  
Vol 6 (3) ◽  
pp. 78 ◽  
Author(s):  
Izaddeen Yakasai ◽  
Pg Emeroylariffion Abas ◽  
Shubi F Kaijage ◽  
Wahyu Caesarendra ◽  
Feroza Begum

A porous-core photonic crystal fiber based on a cyclic olefin homopolymer (Zeonex) is proposed; it shows high birefringence, high core power fraction, low losses, and near-zero flat dispersion. The fiber’s core was designed with quad-elliptical (QE) air holes with its center occupied by bulk background material. The superiority of the QE design over the commonly adopted tri- and penta-elliptical (TE and PE) core designs is demonstrated. The presence of the bulk material at the core center and the geometrical configuration cause a broad contrast in phase refractive indices, thereby producing high birefringence and low transmission losses. A high birefringence of 0.096 was obtained at 1.2 THz, corresponding to a total loss of 0.027 cm−1 and core power fraction of approximately 51%. The chromatic dispersion and effective area of the reported fiber were also characterized within a frequency range of 0.4–1.6 THz. The QE air holes were then filled with chemical warfare agents, namely, tabun and sarin liquids. Then, the relative sensitivity, confinement loss, fractional power flow, and effective material loss (EML) of the sensor were calculated. Nearly the same relative sensitivity (r = 64%) was obtained when the QE core was filled with either liquid. Although the obtained EML for tabun was 0.033 cm−1 and that for sarin was 0.028 cm−1, the confinement loss of the fiber when it was immersed in either liquid was negligible. The proposed fiber can be fabricated using existing fabrication technologies. Moreover, it can be applied and utilized as a THz radiation conveyor in a terahertz time domain spectroscopy system for remote sensing of chemical liquids in the security and defense industries.


2019 ◽  
Vol 12 (2) ◽  
pp. 165-173 ◽  
Author(s):  
Rekha Saha ◽  
Md. Mahbub Hossain ◽  
Md. Ekhlasur Rahaman ◽  
Himadri Shekhar Mondal

2006 ◽  
Vol 55 (1) ◽  
pp. 238
Author(s):  
Li Shu-Guang ◽  
Xing Guang-Long ◽  
Zhou Gui-Yao ◽  
Hou Lan-Tian

2015 ◽  
Vol 118 (24) ◽  
pp. 243102 ◽  
Author(s):  
Yuan-Fong Chou Chau ◽  
Chee Ming Lim ◽  
Voo Nyuk Yoong ◽  
Muhammad Nur Syafi'ie Idris

Sign in / Sign up

Export Citation Format

Share Document