STOCHASTIC PROCESSES ON GROUPS OF DIFFEOMORPHISMS AND VISCOUS HYDRODYNAMICS

Author(s):  
YA. I. BELOPOLSKAYA ◽  
YU. E. GLIKLIKH

The viscous hydrodynamics is investigated via the studying diffusion processes on groups of Hs Sobolev diffeomorphisms of a flat n-dimensional torus (s > ½n + 1). A certain stochastic perturbation of the curve on the above groups, describing the motion of perfect incompressible fluid (or of the diffuse matter), is constructed such that it satisfies a certain stochastic analogue of the geodesic equation and the expectation of its "backward velocity" in the tangent space at identical diffeomorphism (algebra of the group) is a solution of Navier–Stokes (or Burgers, respectively) equations. In particular, the existence of solutions of those equations for lower s is proved. Some other approaches to stochastic presentation of viscous hydrodynamics, using the groups of diffeomorphisms, are also discussed.

2010 ◽  
Vol 20 (07) ◽  
pp. 1049-1087 ◽  
Author(s):  
BORIS HASPOT

In this paper, we consider the compressible Navier–Stokes equation with density-dependent viscosity coefficients and a term of capillarity introduced formally by van der Waals in Ref. 51. This model includes at the same time the barotropic Navier–Stokes equations with variable viscosity coefficients, shallow-water system and the model introduced by Rohde in Ref. 46. We first study the well-posedness of the model in critical regularity spaces with respect to the scaling of the associated equations. In a functional setting as close as possible to the physical energy spaces, we prove global existence of solutions close to a stable equilibrium, and local in time existence of solutions with general initial data. Uniqueness is also obtained.


2005 ◽  
Vol 128 (1) ◽  
pp. 69-75 ◽  
Author(s):  
Srinath Madasu ◽  
Ali Borhan ◽  
James S. Ultman

In conventional one-dimensional single-path models, radially averaged concentration is calculated as a function of time and longitudinal position in the lungs, and coupled convection and diffusion are accounted for with a dispersion coefficient. The axisymmetric single-path model developed in this paper is a two-dimensional model that incorporates convective-diffusion processes in a more fundamental manner by simultaneously solving the Navier-Stokes and continuity equations with the convection-diffusion equation. A single airway path was represented by a series of straight tube segments interconnected by leaky transition regions that provide for flow loss at the airway bifurcations. As a sample application, the model equations were solved by a finite element method to predict the unsteady state dispersion of an inhaled pulse of inert gas along an airway path having dimensions consistent with Weibel’s symmetric airway geometry. Assuming steady, incompressible, and laminar flow, a finite element analysis was used to solve for the axisymmetric pressure, velocity and concentration fields. The dispersion calculated from these numerical solutions exhibited good qualitative agreement with the experimental values, but quantitatively was in error by 20%–30% due to the assumption of axial symmetry and the inability of the model to capture the complex recirculatory flows near bifurcations.


2010 ◽  
Vol 24 (13) ◽  
pp. 1333-1336
Author(s):  
LIN CHEN ◽  
DENGBIN TANG ◽  
XIN GUO

The convection and diffusion processes of free vortex in compressible flows are simulated by using high precision numerical method to solve for the Navier–Stokes equations. Accurate treatment of the boundary condition is extremely important for simulation of vortex flows. The developed numerical methods are well presented by combining six-order non-dissipation compact schemes with Navier–Stokes characteristic boundary condition having transverse and viscous terms, and can accurately simulate the movement of free vortex. The numerical reflecting waves at the boundaries are well controlled.


Author(s):  
Lucas I Finn ◽  
Bruce M Boghosian ◽  
Christopher N Kottke

We describe a software package designed for the investigation of topological fluid dynamics with a novel algorithm for locating and tracking vortex cores. The package is equipped with modules for generating desired vortex knots and links and evolving them according to the Navier–Stokes equations, while tracking and visualizing them. The package is parallelized using a message passing interface for a multiprocessor environment and makes use of a computational steering library for dynamic user intervention.


Sign in / Sign up

Export Citation Format

Share Document