scholarly journals THE SMOOTHNESS OF RIEMANNIAN SUBMERSIONS WITH NON-NEGATIVE SECTIONAL CURVATURE

2005 ◽  
Vol 07 (01) ◽  
pp. 137-144
Author(s):  
JIANGUO CAO ◽  
MEI-CHI SHAW

Let Mn be a complete, non-compact and C∞-smooth Riemannian manifold with non-negative sectional curvature. Suppose that [Formula: see text] is a soul of Mn given by the fundamental theory of Cheeger and Gromoll, and suppose that [Formula: see text] is a distance non-increasing retraction from the whole manifold to the soul (e.g. the retraction given by Sharafutdinov). Then we show that the retraction Ψ above must give rise to a C∞-smooth Riemannian submersion from Mn to the soul [Formula: see text]. Moreover, we derive a new flat strip theorem associated with the Cheeger–Gromoll convex exhaustion for the manifold above.

2005 ◽  
Vol 72 (3) ◽  
pp. 391-402 ◽  
Author(s):  
Bang-Yen Chen

In an earlier article we obtain a sharp inequality for an arbitrary isometric immersion from a Riemannian manifold admitting a Riemannian submersion with totally geodesic fibres into a unit sphere. In this article we investigate the immersions which satisfy the equality case of the inequality. As a by-product, we discover a new characterisation of Cartan hypersurface in S4.


2008 ◽  
Vol 60 (6) ◽  
pp. 1201-1218 ◽  
Author(s):  
Eric Bahuaud ◽  
Tracey Marsh

AbstractWe consider a complete noncompact Riemannian manifold M and give conditions on a compact submanifold K ⊂ M so that the outward normal exponential map off the boundary of K is a diffeomorphism onto M\K. We use this to compactify M and show that pinched negative sectional curvature outside K implies M has a compactification with a well-defined Hölder structure independent of K. The Hölder constant depends on the ratio of the curvature pinching. This extends and generalizes a 1985 result of Anderson and Schoen.


1991 ◽  
Vol 11 (4) ◽  
pp. 653-686 ◽  
Author(s):  
Renato Feres

AbstractWe improve and extend a result due to M. Kanai about rigidity of geodesic flows on closed Riemannian manifolds of negative curvature whose stable or unstable horospheric foliation is smooth. More precisely, the main results proved here are: (1) Let M be a closed C∞ Riemannian manifold of negative sectional curvature. Assume the stable or unstable foliation of the geodesic flow φt: V → V on the unit tangent bundle V of M is C∞. Assume, moreover, that either (a) the sectional curvature of M satisfies −4 < K ≤ −1 or (b) the dimension of M is odd. Then the geodesic flow of M is C∞-isomorphic (i.e., conjugate under a C∞ diffeomorphism between the unit tangent bundles) to the geodesic flow on a closed Riemannian manifold of constant negative curvature. (2) For M as above, assume instead of (a) or (b) that dim M ≡ 2(mod 4). Then either the above conclusion holds or φ1, is C∞-isomorphic to the flow , on the quotient Γ\, where Γ is a subgroup of a real Lie group ⊂ Diffeo () with Lie algebra is the geodesic flow on the unit tangent bundle of the complex hyperbolic space ℂHm, m = ½ dim M.


1996 ◽  
Vol 54 (3) ◽  
pp. 483-487 ◽  
Author(s):  
Yi-Hu Yang

Milnor's classic result that the fundamental group of a compact Riemannian manifold of negative sectional curvature has exponential growth is generalised to the case of negative Ricci curvature and non-positive sectional curvature.


1997 ◽  
Vol 17 (1) ◽  
pp. 247-252
Author(s):  
CHENGBO YUE

Green [5] conjectured that if $M$ is a closed Riemannian manifold of negative sectional curvature such that the mean curvatures of the horospheres through each point depend only on the point, then $V$ is a locally symmetric space of rank one. He proved this in dimension two. In this paper we prove that under Green's assumption, $M$ must be asymptotically harmonic and that the geodesic flow on $M$ is $C^{\infty}$ conjugate to that of a locally symmetric space of rank one. Combining this with the recent rigidity theorem of Besson–Courtois–Gallot [1], it follows that Green's conjecture is true for all dimensions.


2017 ◽  
Vol 14 (12) ◽  
pp. 1750171 ◽  
Author(s):  
Şemsi Eken Meri̇ç ◽  
Erol Kiliç ◽  
Yasemi̇n Sağiroğlu

In this paper, we consider a Lagrangian Riemannian submersion from a Hermitian manifold to a Riemannian manifold and establish some basic inequalities to obtain relationships between the intrinsic and extrinsic invariants for such a submersion. Indeed, using these inequalities, we provide necessary and sufficient conditions for which a Lagrangian Riemannian submersion [Formula: see text] has totally geodesic or totally umbilical fibers. Moreover, we study the harmonicity of Lagrangian Riemannian submersions and obtain a characterization for such submersions to be harmonic.


2013 ◽  
Vol 56 (1) ◽  
pp. 173-183 ◽  
Author(s):  
Bayram Ṣahin

AbstractWe introduce semi-invariant Riemannian submersions from almost Hermitian manifolds onto Riemannian manifolds. We give examples, investigate the geometry of foliations that arise from the definition of a Riemannian submersion, and find necessary sufficient conditions for total manifold to be a locally product Riemannian manifold. We also find necessary and sufficient conditions for a semi-invariant submersion to be totally geodesic. Moreover, we obtain a classification for semiinvariant submersions with totally umbilical fibers and show that such submersions put some restrictions on total manifolds.


Author(s):  
Abdigappar Narmanov ◽  
Xurshid Sharipov

Subject of present paper is the geometry of foliation defined by submersions on complete Riemannian manifold. It is proven foliation defined by Riemannian submersion on the complete manifold of zero sectional curvature is total geodesic foliation with isometric leaves. Also it is shown level surfaces of metric function are conformally equivalent.


Author(s):  
Huiling Le

We give a condition on Riemannian submersions from a Riemannian manifoldMto a Riemannian manifoldNwhich will ensure that it induces a differential operator onNfrom the Laplace-Beltrami operator onM. Equivalently, this condition ensures that a Riemannian submersion maps Brownian motion to a diffusion.


Sign in / Sign up

Export Citation Format

Share Document