EMBEDDED HYPERSURFACES WITH CONSTANT mTH MEAN CURVATURE IN A UNIT SPHERE

2010 ◽  
Vol 12 (06) ◽  
pp. 997-1013 ◽  
Author(s):  
GUOXIN WEI ◽  
QING-MING CHENG ◽  
HAIZHONG LI

In this paper, we study n-dimensional hypersurfaces with constant mth mean curvature in a unit sphere Sn+1(1) and construct many compact nontrivial embedded hypersurfaces with constant mth mean curvature Hm > 0 in Sn+1(1), for 1 ≤ m ≤ n-1. Moreover, if the 2nd mean curvature H2 takes value between [Formula: see text] and [Formula: see text] for any integer k ≥ 2 and n ≥ 3, then there exists an n-dimensional compact nontrivial embedded hypersurface with constant H2 (i.e. constant scalar curvature) in Sn+1(1); If the 4th mean curvature H4 takes value between [Formula: see text] and [Formula: see text] for any integer k ≥ 3 and n ≥ 5, then there exists an n-dimensional compact nontrivial embedded hypersurface with constant H4 in Sn+1(1).

2020 ◽  
Vol 63 (4) ◽  
pp. 909-920
Author(s):  
Yaning Wang

AbstractIn this paper we obtain some new characterizations of pseudo-Einstein real hypersurfaces in $\mathbb{C}P^{2}$ and $\mathbb{C}H^{2}$. More precisely, we prove that a real hypersurface in $\mathbb{C}P^{2}$ or $\mathbb{C}H^{2}$ with constant mean curvature is generalized ${\mathcal{D}}$-Einstein with constant coefficient if and only if it is pseudo-Einstein. We prove that a real hypersurface in $\mathbb{C}P^{2}$ with constant scalar curvature is generalized ${\mathcal{D}}$-Einstein with constant coefficient if and only if it is pseudo-Einstein.


1972 ◽  
Vol 45 ◽  
pp. 139-165 ◽  
Author(s):  
Joseph Erbacher

In a recent paper [2] Nomizu and Smyth have determined the hypersurfaces Mn of non-negative sectional curvature iso-metrically immersed in the Euclidean space Rn+1 or the sphere Sn+1 with constant mean curvature under the additional assumption that the scalar curvature of Mn is constant. This additional assumption is automatically satisfied if Mn is compact. In this paper we extend these results to codimension p isometric immersions. We determine the n-dimensional submanifolds Mn of non-negative sectional curvature isometrically immersed in the Euclidean Space Rn+P or the sphere Sn+P with constant mean curvature under the additional assumptions that Mn has constant scalar curvature and the curvature tensor of the connection in the normal bundle is zero. By constant mean curvature we mean that the mean curvature normal is paral lel with respect to the connection in the normal bundle. The assumption that Mn has constant scalar curvature is automatically satisfied if Mn is compact. The assumption on the normal connection is automatically sa tisfied if p = 2 and the mean curvature normal is not zero.


2015 ◽  
Vol 26 (02) ◽  
pp. 1550014 ◽  
Author(s):  
Uğur Dursun ◽  
Rüya Yeğin

We study submanifolds of hyperbolic spaces with finite type hyperbolic Gauss map. First, we classify the hyperbolic submanifolds with 1-type hyperbolic Gauss map. Then we prove that a non-totally umbilical hypersurface Mn with nonzero constant mean curvature in a hyperbolic space [Formula: see text] has 2-type hyperbolic Gauss map if and only if M has constant scalar curvature. We also classify surfaces with constant mean curvature in the hyperbolic space [Formula: see text] having 2-type hyperbolic Gauss map. Moreover we show that a horohypersphere in [Formula: see text] has biharmonic hyperbolic Gauss map.


2007 ◽  
Vol 09 (02) ◽  
pp. 183-200 ◽  
Author(s):  
YOUNG JIN SUH ◽  
HAE YOUNG YANG

In this paper, we study n-dimensional compact minimal hypersurfaces in a unit sphere Sn+1(1) and give an answer for S. S. Chern's conjecture. We have shown that [Formula: see text] if S > n, and prove that an n-dimensional compact minimal hypersurface with constant scalar curvature in Sn+1(1) is a totally geodesic sphere or a Clifford torus if [Formula: see text], where S denotes the squared norm of the second fundamental form of this hypersurface.


2011 ◽  
Vol 54 (1) ◽  
pp. 67-75 ◽  
Author(s):  
QIN ZHANG

AbstractLet Mn be an n-dimensional closed hypersurface with constant mean curvature H satisfying |H| ≤ ϵ(n) in a unit sphere Sn+1(1), n ≤ 8 and S the square of the length of the second fundamental form of M. There exists a constant δ(n, H) > 0, which depends only on n and H such that if S0 ≤ S ≤ S0 + δ(n, H), then S ≡ S0 and M is isometric to a Clifford hypersurface, where ϵ(n) is a sufficiently small constant depending on n and $S_0=n+\frac{n^3}{2(n-1)}H^2+\frac{n(n-2)}{2(n-1)}\sqrt{n^2H^4+4(n-1)H^2}$.


2006 ◽  
Vol 49 (1) ◽  
pp. 241-249 ◽  
Author(s):  
Qiaoling Wang ◽  
Changyu Xia

AbstractThis paper studies topological and metric rigidity theorems for hypersurfaces in a Euclidean sphere. We first show that an $n({\geq}\,2)$-dimensional complete connected oriented closed hypersurface with non-vanishing Gauss–Kronecker curvature immersed in a Euclidean open hemisphere is diffeomorphic to a Euclidean $n$-sphere. We also show that an $n({\geq}\,2)$-dimensional complete connected orientable hypersurface immersed in a unit sphere $S^{n+1}$ whose Gauss image is contained in a closed geodesic ball of radius less than $\pi/2$ in $S^{n+1}$ is diffeomorphic to a sphere. Finally, we prove that an $n({\geq}\,2)$-dimensional connected closed orientable hypersurface in $S^{n+1}$ with constant scalar curvature greater than $n(n-1)$ and Gauss image contained in an open hemisphere is totally umbilic.


2001 ◽  
Vol 73 (3) ◽  
pp. 327-332 ◽  
Author(s):  
LUIZ A. M. SOUSA JR.

Let M be an n-dimensional closed minimally immersed hypersurface in the unit sphere Sn + 1. Assume in addition that M has constant scalar curvature or constant Gauss-Kronecker curvature. In this note we announce that if M has (n - 1) principal curvatures with the same sign everywhere, then M is isometric to a Clifford Torus <img src="http:/img/fbpe/aabc/v73n3/03ab.gif" alt="03ab.gif (725 bytes)" align="middle">.


Sign in / Sign up

Export Citation Format

Share Document