Closed $3$ -dimensional hypersurfaces with constant mean curvature and constant scalar curvature

1990 ◽  
Vol 61 (1) ◽  
pp. 195-206 ◽  
Author(s):  
Sebasti�o C. de Almeida ◽  
Fabiano G. B. Brito
2020 ◽  
Vol 63 (4) ◽  
pp. 909-920
Author(s):  
Yaning Wang

AbstractIn this paper we obtain some new characterizations of pseudo-Einstein real hypersurfaces in $\mathbb{C}P^{2}$ and $\mathbb{C}H^{2}$. More precisely, we prove that a real hypersurface in $\mathbb{C}P^{2}$ or $\mathbb{C}H^{2}$ with constant mean curvature is generalized ${\mathcal{D}}$-Einstein with constant coefficient if and only if it is pseudo-Einstein. We prove that a real hypersurface in $\mathbb{C}P^{2}$ with constant scalar curvature is generalized ${\mathcal{D}}$-Einstein with constant coefficient if and only if it is pseudo-Einstein.


1972 ◽  
Vol 45 ◽  
pp. 139-165 ◽  
Author(s):  
Joseph Erbacher

In a recent paper [2] Nomizu and Smyth have determined the hypersurfaces Mn of non-negative sectional curvature iso-metrically immersed in the Euclidean space Rn+1 or the sphere Sn+1 with constant mean curvature under the additional assumption that the scalar curvature of Mn is constant. This additional assumption is automatically satisfied if Mn is compact. In this paper we extend these results to codimension p isometric immersions. We determine the n-dimensional submanifolds Mn of non-negative sectional curvature isometrically immersed in the Euclidean Space Rn+P or the sphere Sn+P with constant mean curvature under the additional assumptions that Mn has constant scalar curvature and the curvature tensor of the connection in the normal bundle is zero. By constant mean curvature we mean that the mean curvature normal is paral lel with respect to the connection in the normal bundle. The assumption that Mn has constant scalar curvature is automatically satisfied if Mn is compact. The assumption on the normal connection is automatically sa tisfied if p = 2 and the mean curvature normal is not zero.


2015 ◽  
Vol 26 (02) ◽  
pp. 1550014 ◽  
Author(s):  
Uğur Dursun ◽  
Rüya Yeğin

We study submanifolds of hyperbolic spaces with finite type hyperbolic Gauss map. First, we classify the hyperbolic submanifolds with 1-type hyperbolic Gauss map. Then we prove that a non-totally umbilical hypersurface Mn with nonzero constant mean curvature in a hyperbolic space [Formula: see text] has 2-type hyperbolic Gauss map if and only if M has constant scalar curvature. We also classify surfaces with constant mean curvature in the hyperbolic space [Formula: see text] having 2-type hyperbolic Gauss map. Moreover we show that a horohypersphere in [Formula: see text] has biharmonic hyperbolic Gauss map.


Author(s):  
Yaohua Wang

In this paper, we will consider 4-dimensional manifolds with nonnegative scalar curvature and constant mean curvature (CMC) boundary. For compact manifolds with boundary, the influence of the nonnegativity of the region scalar curvature to the geometry of the boundary is considered. Some inequalities are established for manifolds with inner boundary and outer boundary. Even for compact manifolds without inner boundary, we can obtain some inequalities involving the geometric quantities of the boundary and give some obstruction. We also discuss the 4-dimensional asymptotically flat extension of the 3-dimensional Bartnik data with CMC boundary and provide the upper bound of the Bartnik mass.


Geometry ◽  
2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Tongzhu Li ◽  
Changxiong Nie

Let be a space-like hypersurface without umbilical points in the Lorentz space form . We define the conformal metric and the conformal second fundamental form on the hypersurface, which determines the hypersurface up to conformal transformation of . We calculate the Euler-Lagrange equations of the volume functional of the hypersurface with respect to the conformal metric, whose critical point is called a Willmore hypersurface, and we give a conformal characteristic of the hypersurfaces with constant mean curvature and constant scalar curvature. Finally, we prove that if the hypersurface with constant mean curvature and constant scalar curvature is Willmore, then is a hypersurface in .


2020 ◽  
Vol 2020 (767) ◽  
pp. 161-191
Author(s):  
Otis Chodosh ◽  
Michael Eichmair

AbstractWe extend the Lyapunov–Schmidt analysis of outlying stable constant mean curvature spheres in the work of S. Brendle and the second-named author [S. Brendle and M. Eichmair, Isoperimetric and Weingarten surfaces in the Schwarzschild manifold, J. Differential Geom. 94 2013, 3, 387–407] to the “far-off-center” regime and to include general Schwarzschild asymptotics. We obtain sharp existence and non-existence results for large stable constant mean curvature spheres that depend delicately on the behavior of scalar curvature at infinity.


2019 ◽  
Vol 16 (03) ◽  
pp. 1950039 ◽  
Author(s):  
V. Venkatesha ◽  
Devaraja Mallesha Naik

If [Formula: see text] is a 3-dimensional contact metric manifold such that [Formula: see text] which admits a Yamabe soliton [Formula: see text] with the flow vector field [Formula: see text] pointwise collinear with the Reeb vector field [Formula: see text], then we show that the scalar curvature is constant and the manifold is Sasakian. Moreover, we prove that if [Formula: see text] is endowed with a Yamabe soliton [Formula: see text], then either [Formula: see text] is flat or it has constant scalar curvature and the flow vector field [Formula: see text] is Killing. Furthermore, we show that if [Formula: see text] is non-flat, then either [Formula: see text] is a Sasakian manifold of constant curvature [Formula: see text] or [Formula: see text] is an infinitesimal automorphism of the contact metric structure on [Formula: see text].


Sign in / Sign up

Export Citation Format

Share Document