scholarly journals On maps which preserve semipositivity and quantifier elimination theory for real numbers

Author(s):  
Grzegorz Pastuszak ◽  
Adam Skowyrski ◽  
Andrzej Jamiołkowski

Assume that [Formula: see text] is a superoperator which preserves hermiticity. We give an algorithm determining whether [Formula: see text] preserves semipositivity (we call [Formula: see text] positive in this case). Our approach to the problem has a model-theoretic nature, namely, we apply techniques of quantifier elimination theory for real numbers. An approach based on these techniques seems to be the only one that allows to decide whether an arbitrary hermiticity-preserving [Formula: see text] is positive. Before we go to detailed analysis of the problem, we argue that quantifier elimination for real numbers (and also for complex numbers) can play a significant role in quantum information theory and other areas as well.

2017 ◽  
Vol 15 (07) ◽  
pp. 1750052 ◽  
Author(s):  
Yang Liu ◽  
Ruihu Li ◽  
Liangdong Lü ◽  
Luobin Guo

The Bose–Chaudhuri–Hocquenghem (BCH) codes have been studied for more than 57 years and have found wide application in classical communication system and quantum information theory. In this paper, we study the construction of quantum codes from a family of [Formula: see text]-ary BCH codes with length [Formula: see text] (also called antiprimitive BCH codes in the literature), where [Formula: see text] is a power of 2 and [Formula: see text]. By a detailed analysis of some useful properties about [Formula: see text]-ary cyclotomic cosets modulo [Formula: see text], Hermitian dual-containing conditions for a family of non-narrow-sense antiprimitive BCH codes are presented, which are similar to those of [Formula: see text]-ary primitive BCH codes. Consequently, via Hermitian Construction, a family of new quantum codes can be derived from these dual-containing BCH codes. Some of these new antiprimitive quantum BCH codes are comparable with those derived from primitive BCH codes.


2021 ◽  
pp. 1-11
Author(s):  
Rosy Pradhan ◽  
Mohammad Rafique Khan ◽  
Prabir Kumar Sethy ◽  
Santosh Kumar Majhi

The field of optimization science is proliferating that has made complex real-world problems easy to solve. Metaheuristics based algorithms inspired by nature or physical phenomena based methods have made its way in providing near-ideal (optimal) solutions to several complex real-world problems. Ant lion Optimization (ALO) has inspired by the hunting behavior of antlions for searching for food. Even with a unique idea, it has some limitations like a slower rate of convergence and sometimes confines itself into local solutions (optima). Therefore, to enhance its performance of classical ALO, quantum information theory is hybridized with classical ALO and named as QALO or quantum theory based ALO. It can escape from the limitations of basic ALO and also produces stability between processes of explorations followed by exploitation. CEC2017 benchmark set is adopted to estimate the performance of QALO compared with state-of-the-art algorithms. Experimental and statistical results demonstrate that the proposed method is superior to the original ALO. The proposed QALO extends further to solve the model order reduction (MOR) problem. The QALO based MOR method performs preferably better than other compared techniques. The results from the simulation study illustrate that the proposed method effectively utilized for global optimization and model order reduction.


Universe ◽  
2019 ◽  
Vol 5 (1) ◽  
pp. 33 ◽  
Author(s):  
Liron Levy ◽  
Moshe Goldstein

In recent years, tools from quantum information theory have become indispensable in characterizing many-body systems. In this work, we employ measures of entanglement to study the interplay between disorder and the topological phase in 1D systems of the Kitaev type, which can host Majorana end modes at their edges. We find that the entanglement entropy may actually increase as a result of disorder, and identify the origin of this behavior in the appearance of an infinite-disorder critical point. We also employ the entanglement spectrum to accurately determine the phase diagram of the system, and find that disorder may enhance the topological phase, and lead to the appearance of Majorana zero modes in systems whose clean version is trivial.


Sign in / Sign up

Export Citation Format

Share Document