scholarly journals Higher Dimensional Elliptic Fibrations and Zariski Decomposition

Author(s):  
Antonella Grassi ◽  
David Wen
2010 ◽  
pp. 2651-2680
Author(s):  
Gavin Brown ◽  
Anda Degeratu ◽  
Katrin Wendland

2011 ◽  
Vol 20 (12) ◽  
pp. 1741-1768 ◽  
Author(s):  
JOEL ZABLOW

We extend the notion of geometric intersection numbers 0 and 1, for circles in the Dehn quandle, to general quandles, assuming existence of elements having certain algebraic properties in the latter. These properties enable the construction of many useful 2 and 3 cycles in Dehn quandle homology. Particularly, we construct a special 2-cycle homology representative and an operation which promotes it to higher dimensional cycles of the same type, in the Dehn quandle, and show how to do so in any quandles admitting such elements. For such quandles, this gives some non-triviality results in the quandle homology. We look at a secondary rack formed by tuples of elements of the Dehn quandle and using the ideas above, obtain some basic non-triviality results in its homology as well. We also give some initial possibilities for its application in representing monodromy of singularities of elliptic fibrations.


2018 ◽  
Author(s):  
Peter De Wolf ◽  
Zhuangqun Huang ◽  
Bede Pittenger

Abstract Methods are available to measure conductivity, charge, surface potential, carrier density, piezo-electric and other electrical properties with nanometer scale resolution. One of these methods, scanning microwave impedance microscopy (sMIM), has gained interest due to its capability to measure the full impedance (capacitance and resistive part) with high sensitivity and high spatial resolution. This paper introduces a novel data-cube approach that combines sMIM imaging and sMIM point spectroscopy, producing an integrated and complete 3D data set. This approach replaces the subjective approach of guessing locations of interest (for single point spectroscopy) with a big data approach resulting in higher dimensional data that can be sliced along any axis or plane and is conducive to principal component analysis or other machine learning approaches to data reduction. The data-cube approach is also applicable to other AFM-based electrical characterization modes.


2020 ◽  
Vol 9 (10) ◽  
pp. 8545-8557
Author(s):  
K. P. Singh ◽  
T. A. Singh ◽  
M. Daimary
Keyword(s):  

Author(s):  
Nicholas Mee

Celestial Tapestry places mathematics within a vibrant cultural and historical context, highlighting links to the visual arts and design, and broader areas of artistic creativity. Threads are woven together telling of surprising influences that have passed between the arts and mathematics. The story involves many intriguing characters: Gaston Julia, who laid the foundations for fractals and computer art while recovering in hospital after suffering serious injury in the First World War; Charles Howard, Hinton who was imprisoned for bigamy but whose books had a huge influence on twentieth-century art; Michael Scott, the Scottish necromancer who was the dedicatee of Fibonacci’s Book of Calculation, the most important medieval book of mathematics; Richard of Wallingford, the pioneer clockmaker who suffered from leprosy and who never recovered from a lightning strike on his bedchamber; Alicia Stott Boole, the Victorian housewife who amazed mathematicians with her intuition for higher-dimensional space. The book includes more than 200 colour illustrations, puzzles to engage the reader, and many remarkable tales: the secret message in Hans Holbein’s The Ambassadors; the link between Viking runes, a Milanese banking dynasty, and modern sculpture; the connection between astrology, religion, and the Apocalypse; binary numbers and the I Ching. It also explains topics on the school mathematics curriculum: algorithms; arithmetic progressions; combinations and permutations; number sequences; the axiomatic method; geometrical proof; tessellations and polyhedra, as well as many essential topics for arts and humanities students: single-point perspective; fractals; computer art; the golden section; the higher-dimensional inspiration behind modern art.


1989 ◽  
Vol 16 (1-4) ◽  
pp. 87-101 ◽  
Author(s):  
A. Janner
Keyword(s):  

Author(s):  
Alice Garbagnati

Abstract We discuss the birational geometry and the Kodaira dimension of certain varieties previously constructed by Schreieder, proving that in any dimension they admit an elliptic fibration and they are not of general type. The $l$-dimensional variety $Y_{(n)}^{(l)}$, which is the quotient of the product of a certain curve $C_{(n)}$ by itself $l$ times by a group $G\simeq \left ({\mathbb{Z}}/n{\mathbb{Z}}\right )^{l-1}$ of automorphisms, was constructed by Schreieder to obtain varieties with prescribed Hodge numbers. If $n=3^c$ Schreieder constructed an explicit smooth birational model of it, and Flapan proved that the Kodaira dimension of this smooth model is 1, if $c>1$; if $l=2$ it is a modular elliptic surface; if $l=3$ it admits a fibration in K3 surfaces. In this paper we generalize these results: without any assumption on $n$ and $l$ we prove that $Y_{(n)}^{(l)}$ admits many elliptic fibrations and its Kodaira dimension is at most 1. Moreover, if $l=2$, its minimal resolution is a modular elliptic surface, obtained by a base change of order $n$ on a specific extremal rational elliptic surface; if $l\geq 3$ it has a birational model that admits a fibration in K3 surfaces and a fibration in $(l-1)$-dimensional varieties of Kodaira dimension at most 0.


Sign in / Sign up

Export Citation Format

Share Document