Celestial Tapestry

Author(s):  
Nicholas Mee

Celestial Tapestry places mathematics within a vibrant cultural and historical context, highlighting links to the visual arts and design, and broader areas of artistic creativity. Threads are woven together telling of surprising influences that have passed between the arts and mathematics. The story involves many intriguing characters: Gaston Julia, who laid the foundations for fractals and computer art while recovering in hospital after suffering serious injury in the First World War; Charles Howard, Hinton who was imprisoned for bigamy but whose books had a huge influence on twentieth-century art; Michael Scott, the Scottish necromancer who was the dedicatee of Fibonacci’s Book of Calculation, the most important medieval book of mathematics; Richard of Wallingford, the pioneer clockmaker who suffered from leprosy and who never recovered from a lightning strike on his bedchamber; Alicia Stott Boole, the Victorian housewife who amazed mathematicians with her intuition for higher-dimensional space. The book includes more than 200 colour illustrations, puzzles to engage the reader, and many remarkable tales: the secret message in Hans Holbein’s The Ambassadors; the link between Viking runes, a Milanese banking dynasty, and modern sculpture; the connection between astrology, religion, and the Apocalypse; binary numbers and the I Ching. It also explains topics on the school mathematics curriculum: algorithms; arithmetic progressions; combinations and permutations; number sequences; the axiomatic method; geometrical proof; tessellations and polyhedra, as well as many essential topics for arts and humanities students: single-point perspective; fractals; computer art; the golden section; the higher-dimensional inspiration behind modern art.

In this chapter, a geometrical model to accurately describe the distribution of light points in diffraction patterns of quasicrystals is proposed. It is shown that the proposed system of parallel lines has axes of the fifth order and periodically repeating the fundamental domain of the quasicrystals. This fundamental domain is 4D-polytope, called the golden hyper-rhombohedron. It consists of eight rhombohedrons densely filling the 4D space. Faces of the hyper-rhombohedron are connected by the golden section; they can be scaled as needed. On this universal lattice of the vertices of the golden hyper-rhombohedrons, famous crystallographic lattices—Bravais, Delone, Voronoi, etc.—can be embedded. On the lattice of the vertices of the golden hyper-rhombohedrons, projections of all regular three-dimensional convex bodies—Plato's bodies—can be constructed.


2018 ◽  
Author(s):  
Peter De Wolf ◽  
Zhuangqun Huang ◽  
Bede Pittenger

Abstract Methods are available to measure conductivity, charge, surface potential, carrier density, piezo-electric and other electrical properties with nanometer scale resolution. One of these methods, scanning microwave impedance microscopy (sMIM), has gained interest due to its capability to measure the full impedance (capacitance and resistive part) with high sensitivity and high spatial resolution. This paper introduces a novel data-cube approach that combines sMIM imaging and sMIM point spectroscopy, producing an integrated and complete 3D data set. This approach replaces the subjective approach of guessing locations of interest (for single point spectroscopy) with a big data approach resulting in higher dimensional data that can be sliced along any axis or plane and is conducive to principal component analysis or other machine learning approaches to data reduction. The data-cube approach is also applicable to other AFM-based electrical characterization modes.


2014 ◽  
Vol 70 (a1) ◽  
pp. C1-C1 ◽  
Author(s):  
Ted Janssen ◽  
Aloysio Janner

2014 is the International Year of Crystallography. During at least fifty years after the discovery of diffraction of X-rays by crystals, it was believed that crystals have lattice periodicity, and crystals were defined by this property. Now it has become clear that there is a large class of compounds with interesting properties that should be called crystals as well, but are not lattice periodic. A method has been developed to describe and analyze these aperiodic crystals, using a higher-dimensional space. In this lecture the discovery of aperiodic crystals and the development of the formalism of the so-called superspace will be described. There are several classes of such materials. After the incommensurate modulated phases, incommensurate magnetic crystals, incommensurate composites and quasicrystals were discovered. They could all be studied using the same technique. Their main properties of these classes and the ways to characterize them will be discussed. The new family of aperiodic crystals has led also to new physical properties, to new techniques in crystallography and to interesting mathematical questions. Much has been done in the last fifty years by hundreds of crystallographers, crystal growers, physicists, chemists, mineralogists and mathematicians. Many new insights have been obtained. But there are still many questions, also of fundamental nature, to be answered. We end with a discussion of these open questions.


Author(s):  
Austin M. Freeman

Angels probably have bodies. There is no good evidence (biblical, philosophical, or historical) to argue against their bodiliness; there is an abundance of evidence (biblical, philosophical, historical) that makes the case for angelic bodies. After surveying biblical texts alleged to demonstrate angelic incorporeality, the discussion moves to examine patristic, medieval, and some modern figures on the subject. In short, before the High Medieval period belief in angelic bodies was the norm, and afterwards it is the exception. A brief foray into modern physics and higher spatial dimensions (termed “hyperspace”), coupled with an analogical use of Edwin Abbott’s Flatland, serves to explain the way in which appealing to higher-dimensional angelic bodies matches the record of angelic activity in the Bible remarkably well. This position also cuts through a historical equivocation on the question of angelic embodiment. Angels do have bodies, but they are bodies very unlike our own. They do not have bodies in any three-dimensional space we can observe, but are nevertheless embodied beings.


2017 ◽  
Vol 3 ◽  
pp. e123 ◽  
Author(s):  
Ken Arroyo Ohori ◽  
Hugo Ledoux ◽  
Jantien Stoter

Objects of more than three dimensions can be used to model geographic phenomena that occur in space, time and scale. For instance, a single 4D object can be used to represent the changes in a 3D object’s shape across time or all its optimal representations at various levels of detail. In this paper, we look at how such higher-dimensional space-time and space-scale objects can be visualised as projections from ℝ4to ℝ3. We present three projections that we believe are particularly intuitive for this purpose: (i) a simple ‘long axis’ projection that puts 3D objects side by side; (ii) the well-known orthographic and perspective projections; and (iii) a projection to a 3-sphere (S3) followed by a stereographic projection to ℝ3, which results in an inwards-outwards fourth axis. Our focus is in using these projections from ℝ4to ℝ3, but they are formulated from ℝnto ℝn−1so as to be easily extensible and to incorporate other non-spatial characteristics. We present a prototype interactive visualiser that applies these projections from 4D to 3D in real-time using the programmable pipeline and compute shaders of the Metal graphics API.


2013 ◽  
Vol 62 (2) ◽  
pp. 265-269 ◽  
Author(s):  
V. Ya. Shevchenko ◽  
G. V. Zhizhin ◽  
A. L. Mackay

2013 ◽  
Vol 470 ◽  
pp. 767-771
Author(s):  
L. Zhang ◽  
Shu Tang Liu

Many real complex phenomena are related with Weierstrass-Mandelbrot function (WMF). Most researches focus on the systems as parameters fixed, such as calculations of its different fractal dimensions or the statistical characteristics of its generalized form and so on. Moreover, real systems always change according to different environments, so that to study the dynamical behavior of these systems as parameters change is important. However, there is few results about this aim. In this paper, we propose simulated results for the effects of parameters changeably on the graph of WMF in higher dimensional space. In addition, the relationships between the Hurst exponent of WMF and its parameters dynamically in 2-and 3-dimensional spaces are also given.


Author(s):  
Paul Aljabar ◽  
Robin Wolz ◽  
Daniel Rueckert

The term manifold learning encompasses a class of machine learning techniques that convert data from a high to lower dimensional representation while respecting the intrinsic geometry of the data. The intuition underlying the use of manifold learning in the context of image analysis is that, while each image may be viewed as a single point in a very high-dimensional space, a set of such points for a population of images may be well represented by a sub-manifold of the space that is likely to be non-linear and of a significantly lower dimension. Recently, manifold learning techniques have begun to be applied to the field of medical image analysis. This chapter will review the most popular manifold learning techniques such as Multi-Dimensional Scaling (MDS), Isomap, Local linear embedding, and Laplacian eigenmaps. It will also demonstrate how these techniques can be used for image registration, segmentation, and biomarker discovery from medical images.


Sign in / Sign up

Export Citation Format

Share Document