MUTUALLY INDEPENDENT HAMILTONIAN PATHS AND CYCLES IN HYPERCUBES

2006 ◽  
Vol 07 (02) ◽  
pp. 235-255 ◽  
Author(s):  
CHAO-MING SUN ◽  
CHENG-KUAN LIN ◽  
HUA-MIN HUANG ◽  
LIH-HSING HSU

Two hamiltonian paths P1 = 〈v1, v2, …, vn(G) 〉 and P2 = 〈 u1, u2, …, un(G) 〉 of G are independent if v1 = u1, vn(G) = un(G), and vi ≠ ui for 1 < i < n(G). A set of hamiltonian paths {P1, P2, …, Pk} of G are mutually independent if any two different hamiltonian paths in the set are independent. A bipartite graph G is hamiltonian laceable if there exists a hamiltonian path joining any two nodes from different partite sets. A bipartite graph is k-mutually independent hamiltonian laceable if there exist k-mutually independent hamiltonian paths between any two nodes from different partite sets. The mutually independent hamiltonian laceability of bipartite graph G, IHPL(G), is the maximum integer k such that G is k-mutually independent hamiltonian laceable. Let Qn be the n-dimensional hypercube. We prove that IHPL(Qn) = 1 if n ∈ {1,2,3}, and IHPL(Qn) = n - 1 if n ≥ 4. A hamiltonian cycle C of G is described as 〈 u1, u2, …, un(G), u1 〉 to emphasize the order of nodes in C. Thus, u1 is the beginning node and ui is the i-th node in C. Two hamiltonian cycles of G beginning at u, C1 = 〈 v1, v2, …, vn(G), v1 〉 and C2 = 〈 u1, u2, …, un(G), u1 〉, are independent if u = v1 = u1, and vi ≠ ui for 1 < i ≤ n(G). A set of hamiltonian cycles {C1, C2, …, Ck} of G are mutually independent if any two different hamiltonian cycles are independent. The mutually independent hamiltonianicity of graph G, IHC(G), is the maximum integer k such that for any node u of G there exist k-mutually independent hamiltonian cycles of G starting at u. We prove that IHC(Qn) = n - 1 if n ∈ {1,2,3} and IHC(Qn) = n if n ≥ 4.

1975 ◽  
Vol 17 (5) ◽  
pp. 763-765 ◽  
Author(s):  
Joseph Zaks

Let V(G) and E(G) denote the vertex set and the edge set of a graph G; let Kn denote the complete graph with n vertices and let Kn, m denote the complete bipartite graph on n and m vertices. A Hamiltonian cycle (Hamiltonian path, respectively) in a graph G is a cycle (path, respectively) in G that contains all the vertices of G.


2016 ◽  
Vol 16 (02) ◽  
pp. 1650002 ◽  
Author(s):  
MEI-MEI GU ◽  
RONG-XIA HAO ◽  
YAN-QUAN FENG

The balanced hypercube BHn, proposed by Wu and Huang, is a new variation of hypercube. A Hamiltonian bipartite graph is Hamiltonian laceable if there exists a Hamiltonian path between two arbitrary vertices from different partite sets. A Hamiltonian laceable graph G is strongly Hamiltonian laceable if there is a path of length [Formula: see text] between any two distinct vertices of the same partite set. A graph G is called k-edge-fault strong Hamiltonian laceable, if G – F is strong Hamiltonian laceable for any edge-fault set F with [Formula: see text]. It has been proved that the balanced hypercube BHn is strong Hamiltonian laceable. In this paper, we improve the above result and prove that BHn is (n – 1)-edge-fault strong Hamiltonian laceable.


2009 ◽  
Vol 3 (2) ◽  
pp. 386-394 ◽  
Author(s):  
Letícia Bueno ◽  
Luerbio Faria ◽  
Figueiredo De ◽  
Fonseca Da

Lov?sz conjectured that every connected vertex-transitive graph has a Hamiltonian path. The odd graphs Ok form a well-studied family of connected, k-regular, vertex-transitive graphs. It was previously known that Ok has Hamiltonian paths for k ? 14. A direct computation of Hamiltonian paths in Ok is not feasible for large values of k, because Ok has (2k - 1, k - 1) vertices and k/2 (2k - 1, k - 1) edges. We show that Ok has Hamiltonian paths for 15 ? k ? 18. Instead of directly running any heuristics, we use existing results on the middle levels problem, therefore further relating these two fundamental problems, namely finding a Hamiltonian path in the odd graph and finding a Hamiltonian cycle in the corresponding middle levels graph. We show that further improved results for the middle levels problem can be used to find Hamiltonian paths in Ok for larger values of k.


2004 ◽  
Vol 2004 (30) ◽  
pp. 1613-1616 ◽  
Author(s):  
Brian Hopkins

We develop a combinatorial method to show that the dodecahedron graph has, up to rotation and reflection, a unique Hamiltonian cycle. Platonic graphs with this property are called topologically uniquely Hamiltonian. The same method is used to demonstrate topologically distinct Hamiltonian cycles on the icosahedron graph and to show that a regular graph embeddable on the2-holed torus is topologically uniquely Hamiltonian.


Author(s):  
Mahtab Hosseininia ◽  
Faraz Dadgostari

In this chapter, the concepts of Hamiltonian paths and Hamiltonian cycles are discussed. In the first section, the history of Hamiltonian graphs is described, and then some concepts such as Hamiltonian paths, Hamiltonian cycles, traceable graphs, and Hamiltonian graphs are defined. Also some most known Hamiltonian graph problems such as travelling salesman problem (TSP), Kirkman’s cell of a bee, Icosian game, and knight’s tour problem are presented. In addition, necessary and (or) sufficient conditions for existence of a Hamiltonian cycle are investigated. Furthermore, in order to solve Hamiltonian cycle problems, some algorithms are introduced in the last section.


2014 ◽  
Vol Vol. 16 no. 1 (Graph Theory) ◽  
Author(s):  
Christian Löwenstein ◽  
Dieter Rautenbach ◽  
Roman Soták

Graph Theory International audience For a positive integer n∈ℕ and a set D⊆ ℕ, the distance graph GnD has vertex set &#x007b; 0,1,\textellipsis,n-1&#x007d; and two vertices i and j of GnD are adjacent exactly if |j-i|∈D. The condition gcd(D)=1 is necessary for a distance graph GnD being connected. Let D=&#x007b;d1,d2&#x007d;⊆ℕ be such that d1>d2 and gcd(d1,d2)=1. We prove the following results. If n is sufficiently large in terms of D, then GnD has a Hamiltonian path with endvertices 0 and n-1. If d1d2 is odd, n is even and sufficiently large in terms of D, then GnD has a Hamiltonian cycle. If d1d2 is even and n is sufficiently large in terms of D, then GnD has a Hamiltonian cycle.


2014 ◽  
Vol 2014 ◽  
pp. 1-6
Author(s):  
Guidong Yu ◽  
Gaixiang Cai ◽  
Miaolin Ye ◽  
Jinde Cao

LetGbe an undirected simple graph of ordern. LetA(G)be the adjacency matrix ofG, and letμ1(G)≤μ2(G)≤⋯≤μn(G)be its eigenvalues. The energy ofGis defined asℰ(G)=∑i=1n‍|μi(G)|. Denote byGBPTa bipartite graph. In this paper, we establish the sufficient conditions forGhaving a Hamiltonian path or cycle or to be Hamilton-connected in terms of the energy of the complement ofG, and give the sufficient condition forGBPThaving a Hamiltonian cycle in terms of the energy of the quasi-complement ofGBPT.


10.37236/5159 ◽  
2015 ◽  
Vol 22 (3) ◽  
Author(s):  
Francesco Monopoli

We prove that if the vertices of a complete graph are labeled with the elements of an arithmetic progression, then for any given vertex there is a Hamiltonian path starting at this vertex such that the absolute values of the differences of consecutive vertices along the path are pairwise distinct. In another extreme case where the label set has small additive energy, we show that the graph actually possesses a Hamiltonian cycle with the property just mentioned.  These results partially solve a conjecture by Z.-W. Sun.


2009 ◽  
Vol 10 (03) ◽  
pp. 243-251 ◽  
Author(s):  
CHENG-KUAN LIN ◽  
TUNG-YANG HO ◽  
JIMMY J. M. TAN ◽  
LIH-HSING HSU

A bipartite graph G is hamiltonian laceable if there is a hamiltonian path between any two vertices of G from distinct vertex bipartite sets. A bipartite graph G is k-edge fault-tolerant hamiltonian laceable if G - F is hamiltonian laceable for every F ⊆ E(G) with |F| ≤ k. A graph G is k-edge fault-tolerant conditional hamiltonian if G - F is hamiltonian for every F ⊆ E(G) with |F| ≤ k and δ(G - F) ≥ 2. Let G0 = (V0, E0) and G1 = (V1, E1) be two disjoint graphs with |V0| = |V1|. Let Er = {(v,ɸ(v)) | v ϵ V0,ɸ(v) ϵ V1, and ɸ: V0 → V1 is a bijection}. Let G = G0 ⊕ G1 = (V0 ⋃ V1, E0 ⋃ E1 ⋃ Er). The set of n-dimensional hypercube-like graphHn is defined recursively as (a) H1 = K2, K2 is the complete graph with two vertices, and (b) if G0 and G1 are in Hn, then G = G0 ⊕ G1 is in Hn+1. Let Bn be the set of graphs G where G is bipartite and G ϵ Hn. In this paper, we show that every graph in Bn is (n - 2)-edge fault-tolerant hamiltonian laceable if n ≥ 2 and every graph in Bn is (2n - 5)-edge fault-tolerant conditional hamiltonian if n ≥ 3.


2020 ◽  
Vol 70 (2) ◽  
pp. 497-503
Author(s):  
Dipendu Maity ◽  
Ashish Kumar Upadhyay

Abstract If the face-cycles at all the vertices in a map are of same type then the map is said to be a semi-equivelar map. There are eleven types of semi-equivelar maps on the torus. In 1972 Altshuler has presented a study of Hamiltonian cycles in semi-equivelar maps of three types {36}, {44} and {63} on the torus. In this article we study Hamiltonicity of semi-equivelar maps of the other eight types {33, 42}, {32, 41, 31, 41}, {31, 61, 31, 61}, {34, 61}, {41, 82}, {31, 122}, {41, 61, 121} and {31, 41, 61, 41} on the torus. This gives a partial solution to the well known Conjecture that every 4-connected graph on the torus has a Hamiltonian cycle.


Sign in / Sign up

Export Citation Format

Share Document