scholarly journals On generalized 3-connectivity of the strong product of graphs

2018 ◽  
Vol 12 (2) ◽  
pp. 297-317
Author(s):  
Encarnación Abajo ◽  
Rocío Casablanca ◽  
Ana Diánez ◽  
Pedro García-Vázquez

Let G be a connected graph with n vertices and let k be an integer such that 2 ? k ? n. The generalized connectivity kk(G) of G is the greatest positive integer l for which G contains at least l internally disjoint trees connecting S for any set S ? V (G) of k vertices. We focus on the generalized connectivity of the strong product G1 _ G2 of connected graphs G1 and G2 with at least three vertices and girth at least five, and we prove the sharp bound k3(G1 _ G2) ? k3(G1)_3(G2) + k3(G1) + k3(G2)-1.

2012 ◽  
Vol Vol. 14 no. 1 (Graph Theory) ◽  
Author(s):  
Hengzhe Li ◽  
Xueliang Li ◽  
Yuefang Sun

Graph Theory International audience The generalized connectivity of a graph, which was introduced by Chartrand et al. in 1984, is a generalization of the concept of vertex connectivity. Let S be a nonempty set of vertices of G, a collection \T-1, T (2), ... , T-r\ of trees in G is said to be internally disjoint trees connecting S if E(T-i) boolean AND E(T-j) - empty set and V (T-i) boolean AND V(T-j) = S for any pair of distinct integers i, j, where 1 <= i, j <= r. For an integer k with 2 <= k <= n, the k-connectivity kappa(k) (G) of G is the greatest positive integer r for which G contains at least r internally disjoint trees connecting S for any set S of k vertices of G. Obviously, kappa(2)(G) = kappa(G) is the connectivity of G. Sabidussi's Theorem showed that kappa(G square H) >= kappa(G) + kappa(H) for any two connected graphs G and H. In this paper, we prove that for any two connected graphs G and H with kappa(3) (G) >= kappa(3) (H), if kappa(G) > kappa(3) (G), then kappa(3) (G square H) >= kappa(3) (G) + kappa(3) (H); if kappa(G) = kappa(3)(G), then kappa(3)(G square H) >= kappa(3)(G) + kappa(3) (H) - 1. Our result could be seen as an extension of Sabidussi's Theorem. Moreover, all the bounds are sharp.


2019 ◽  
Vol 53 (3) ◽  
pp. 723-730 ◽  
Author(s):  
Sizhong Zhou

For a set ℋ of connected graphs, a spanning subgraph H of a graph G is called an ℋ-factor of G if every component of H is isomorphic to a member ofℋ. An H-factor is also referred as a component factor. If each component of H is a star (resp. path), H is called a star (resp. path) factor. By a P≥ k-factor (k positive integer) we mean a path factor in which each component path has at least k vertices (i.e. it has length at least k − 1). A graph G is called a P≥ k-factor covered graph, if for each edge e of G, there is a P≥ k-factor covering e. In this paper, we prove that (1) a graph G has a {K1,1,K1,2, … ,K1,k}-factor if and only if bind(G) ≥ 1/k, where k ≥ 2 is an integer; (2) a connected graph G is a P≥ 2-factor covered graph if bind(G) > 2/3; (3) a connected graph G is a P≥ 3-factor covered graph if bind(G) ≥ 3/2. Furthermore, it is shown that the results in this paper are best possible in some sense.


2016 ◽  
Vol 09 (02) ◽  
pp. 1650041
Author(s):  
M. R. Chithra ◽  
A. Vijayakumar

Let [Formula: see text] be a family of connected graphs. A spanning subgraph [Formula: see text] of [Formula: see text] is called an [Formula: see text]-factor (component factor) of [Formula: see text] if each component of [Formula: see text] is in [Formula: see text]. In this paper, we study the component factors of the Cartesian product of graphs. Here, we take [Formula: see text] and show that every connected graph [Formula: see text] has a [Formula: see text]-factor where [Formula: see text] and [Formula: see text] is the maximum degree of an induced subgraph [Formula: see text] in [Formula: see text] or [Formula: see text]. Also, we characterize graphs [Formula: see text] having a [Formula: see text]-factor.


2020 ◽  
Vol 12 (05) ◽  
pp. 2050071
Author(s):  
A. Lourdusamy ◽  
T. Mathivanan

The [Formula: see text]-pebbling number, [Formula: see text], of a connected graph [Formula: see text], is the smallest positive integer such that from every placement of [Formula: see text] pebbles, [Formula: see text] pebbles can be moved to any specified target vertex by a sequence of pebbling moves, each move taking two pebbles off a vertex and placing one on an adjacent vertex. A graph [Formula: see text] satisfies the [Formula: see text]-pebbling property if [Formula: see text] pebbles can be moved to any specified vertex when the total starting number of pebbles is [Formula: see text], where [Formula: see text] is the number of vertices with at least one pebble. We show that the cycle [Formula: see text] satisfies the [Formula: see text]-pebbling property. Herscovici conjectured that for any connected graphs [Formula: see text] and [Formula: see text], [Formula: see text]. We prove Herscovici’s conjecture is true, when [Formula: see text] is an even cycle and for variety of graphs [Formula: see text] which satisfy the [Formula: see text]-pebbling property.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Zaryab Hussain ◽  
Ghulam Murtaza ◽  
Toqeer Mahmood ◽  
Jia-Bao Liu

Let G = G 1 × G 2 × ⋯ × G m be the strong product of simple, finite connected graphs, and let ϕ : ℕ ⟶ 0 , ∞ be an increasing function. We consider the action of generalized maximal operator M G ϕ on ℓ p spaces. We determine the exact value of ℓ p -quasi-norm of M G ϕ for the case when G is strong product of complete graphs, where 0 < p ≤ 1 . However, lower and upper bounds of ℓ p -norm have been determined when 1 < p < ∞ . Finally, we computed the lower and upper bounds of M G ϕ p when G is strong product of arbitrary graphs, where 0 < p ≤ 1 .


2017 ◽  
Vol 17 (02) ◽  
pp. 1750007 ◽  
Author(s):  
ZHAO WANG ◽  
YAPING MAO ◽  
CHENGFU YE ◽  
HAIXING ZHAO

The super edge-connectivity [Formula: see text] of a connected graph G is the minimum cardinality of an edge-cut F in G such that every component of G − F contains at least two vertices. Denote by [Formula: see text] the strong product of graphs G and H. For two graphs G and H, Yang proved that [Formula: see text]. In this paper, we give another proof of this result. In particular, we determine [Formula: see text] if [Formula: see text] and [Formula: see text], where [Formula: see text] denotes the minimum edge-degree of a graph G.


2021 ◽  
pp. 2142005
Author(s):  
Xiang Qin ◽  
Yanhua Zhao ◽  
Baoyindureng Wu

The Wiener index [Formula: see text] of a connected graph [Formula: see text] is the sum of distances of all pairs of vertices in [Formula: see text]. In this paper, we show that for any even positive integer [Formula: see text], and [Formula: see text], if [Formula: see text] is a [Formula: see text]-connected graph of order [Formula: see text], then [Formula: see text], where [Formula: see text] is the [Formula: see text]th power of a graph [Formula: see text]. This partially answers an old problem of Gutman and Zhang.


2020 ◽  
Vol 12 (03) ◽  
pp. 2050038
Author(s):  
J. John

A total Steiner set of [Formula: see text] is a Steiner set [Formula: see text] such that the subgraph [Formula: see text] induced by [Formula: see text] has no isolated vertex. The minimum cardinality of a total Steiner set of [Formula: see text] is the total Steiner number of [Formula: see text] and is denoted by [Formula: see text]. Some general properties satisfied by this concept are studied. Connected graphs of order [Formula: see text] with total Steiner number 2 or 3 are characterized. We partially characterized classes of graphs of order [Formula: see text] with total Steiner number equal to [Formula: see text] or [Formula: see text] or [Formula: see text]. It is shown that [Formula: see text]. It is shown that for every pair k, p of integers with [Formula: see text], there exists a connected graph [Formula: see text] of order [Formula: see text] such that [Formula: see text]. Also, it is shown that for every positive integer [Formula: see text], [Formula: see text] and [Formula: see text] with [Formula: see text], there exists a connected graph [Formula: see text] of order [Formula: see text] such that [Formula: see text] and [Formula: see text].


2020 ◽  
Vol 12 (04) ◽  
pp. 2050043
Author(s):  
X. Lenin Xaviour ◽  
S. Robinson Chellathurai

A set S of vertices in a connected graph [Formula: see text] is called a geodetic set if every vertex not in [Formula: see text] lies on a shortest path between two vertices from [Formula: see text]. A set [Formula: see text] of vertices in [Formula: see text] is called a dominating set of [Formula: see text] if every vertex not in [Formula: see text] has at least one neighbor in [Formula: see text]. A set [Formula: see text] is called a geodetic global dominating set of [Formula: see text] if [Formula: see text] is both geodetic and global dominating set of [Formula: see text]. The geodetic global domination number is the minimum cardinality of a geodetic global dominating set in [Formula: see text]. In this paper, we determine the geodetic global domination number of the corona and strong products of two graphs.


2007 ◽  
Vol Vol. 9 no. 1 (Graph and Algorithms) ◽  
Author(s):  
Frédéric Chataigner ◽  
Liliane R. B. Salgado ◽  
Yoshiko Wakabayashi

Graphs and Algorithms International audience Let G=(V,E) be a connected graph with a weight function w: V \to \mathbbZ₊, and let q ≥q 2 be a positive integer. For X⊆ V, let w(X) denote the sum of the weights of the vertices in X. We consider the following problem on G: find a q-partition P=(V₁,V₂, \ldots, V_q) of V such that G[V_i] is connected (1≤q i≤q q) and P maximizes \rm min\w(V_i): 1≤q i≤q q\. This problem is called \textitMax Balanced Connected q-Partition and is denoted by BCP_q. We show that for q≥q 2 the problem BCP_q is NP-hard in the strong sense, even on q-connected graphs, and therefore does not admit a FPTAS, unless \rm P=\rm NP. We also show another inapproximability result for BCP₂ on arbitrary graphs. On q-connected graphs, for q=2 the best result is a \frac43-approximation algorithm obtained by Chleb\'ıková; for q=3 and q=4 we present 2-approximation algorithms. When q is not fixed (it is part of the instance), the corresponding problem is called \textitMax Balanced Connected Partition, and denoted as BCP. We show that BCP does not admit an approximation algorithm with ratio smaller than 6/5, unless \rm P=\rm NP.


Sign in / Sign up

Export Citation Format

Share Document