Herscovici’s conjecture on C2n × G

2020 ◽  
Vol 12 (05) ◽  
pp. 2050071
Author(s):  
A. Lourdusamy ◽  
T. Mathivanan

The [Formula: see text]-pebbling number, [Formula: see text], of a connected graph [Formula: see text], is the smallest positive integer such that from every placement of [Formula: see text] pebbles, [Formula: see text] pebbles can be moved to any specified target vertex by a sequence of pebbling moves, each move taking two pebbles off a vertex and placing one on an adjacent vertex. A graph [Formula: see text] satisfies the [Formula: see text]-pebbling property if [Formula: see text] pebbles can be moved to any specified vertex when the total starting number of pebbles is [Formula: see text], where [Formula: see text] is the number of vertices with at least one pebble. We show that the cycle [Formula: see text] satisfies the [Formula: see text]-pebbling property. Herscovici conjectured that for any connected graphs [Formula: see text] and [Formula: see text], [Formula: see text]. We prove Herscovici’s conjecture is true, when [Formula: see text] is an even cycle and for variety of graphs [Formula: see text] which satisfy the [Formula: see text]-pebbling property.

2018 ◽  
Vol 12 (2) ◽  
pp. 297-317
Author(s):  
Encarnación Abajo ◽  
Rocío Casablanca ◽  
Ana Diánez ◽  
Pedro García-Vázquez

Let G be a connected graph with n vertices and let k be an integer such that 2 ? k ? n. The generalized connectivity kk(G) of G is the greatest positive integer l for which G contains at least l internally disjoint trees connecting S for any set S ? V (G) of k vertices. We focus on the generalized connectivity of the strong product G1 _ G2 of connected graphs G1 and G2 with at least three vertices and girth at least five, and we prove the sharp bound k3(G1 _ G2) ? k3(G1)_3(G2) + k3(G1) + k3(G2)-1.


2019 ◽  
Vol 53 (3) ◽  
pp. 723-730 ◽  
Author(s):  
Sizhong Zhou

For a set ℋ of connected graphs, a spanning subgraph H of a graph G is called an ℋ-factor of G if every component of H is isomorphic to a member ofℋ. An H-factor is also referred as a component factor. If each component of H is a star (resp. path), H is called a star (resp. path) factor. By a P≥ k-factor (k positive integer) we mean a path factor in which each component path has at least k vertices (i.e. it has length at least k − 1). A graph G is called a P≥ k-factor covered graph, if for each edge e of G, there is a P≥ k-factor covering e. In this paper, we prove that (1) a graph G has a {K1,1,K1,2, … ,K1,k}-factor if and only if bind(G) ≥ 1/k, where k ≥ 2 is an integer; (2) a connected graph G is a P≥ 2-factor covered graph if bind(G) > 2/3; (3) a connected graph G is a P≥ 3-factor covered graph if bind(G) ≥ 3/2. Furthermore, it is shown that the results in this paper are best possible in some sense.


2020 ◽  
Vol 12 (04) ◽  
pp. 2050052 ◽  
Author(s):  
Lidan Pei ◽  
Xiangfeng Pan

Let [Formula: see text] be a positive integer and [Formula: see text] be a simple connected graph. The eccentric distance sum of [Formula: see text] is defined as [Formula: see text], where [Formula: see text] is the maximum distance from [Formula: see text] to any other vertex and [Formula: see text] is the sum of all distances from [Formula: see text]. A set [Formula: see text] is a distance [Formula: see text]-dominating set of [Formula: see text] if for every vertex [Formula: see text], [Formula: see text] for some vertex [Formula: see text]. The minimum cardinality among all distance [Formula: see text]-dominating sets of [Formula: see text] is called the distance [Formula: see text]-domination number [Formula: see text] of [Formula: see text]. In this paper, the trees among all [Formula: see text]-vertex trees with distance [Formula: see text]-domination number [Formula: see text] having the minimal eccentric distance sum are determined.


Author(s):  
J. John ◽  
V. R. Sunil Kumar

A set [Formula: see text] is called an open detour set of [Formula: see text] if for each vertex [Formula: see text] in [Formula: see text], either (1) [Formula: see text] is a detour simplicial vertex of [Formula: see text] and [Formula: see text] or (2) [Formula: see text] is an internal vertex of an [Formula: see text]-[Formula: see text] detour for some [Formula: see text]. An open detour set of minimum cardinality is called a minimum open detour set and this cardinality is the open detour number of [Formula: see text], denoted by [Formula: see text]. Connected graphs of order [Formula: see text] with open detour number [Formula: see text] or [Formula: see text] are characterized. It is shown that for any two positive integers [Formula: see text] and [Formula: see text] with [Formula: see text], there exists a connected graph [Formula: see text] such that [Formula: see text] and [Formula: see text], where [Formula: see text] is the detour number of [Formula: see text]. It is also shown that for every pair of positive integers [Formula: see text] and [Formula: see text] with [Formula: see text] and [Formula: see text], there exists a connected graph [Formula: see text] such that [Formula: see text] and [Formula: see text], where [Formula: see text] is the open geodetic number of [Formula: see text].


2020 ◽  
Vol 18 (1) ◽  
pp. 87-92
Author(s):  
Yueqing Li ◽  
Yongsheng Ye

Abstract A pebbling move on a graph G consists of taking two pebbles off one vertex and placing one pebble on an adjacent vertex. The pebbling number of a connected graph G, denoted by f(G), is the least n such that any distribution of n pebbles on G allows one pebble to be moved to any specified vertex by a sequence of pebbling moves. In this paper, we determine the 2-pebbling property of squares of paths and Graham’s conjecture on $\begin{array}{} P_{2n}^2 \end{array} $.


2021 ◽  
pp. 2142005
Author(s):  
Xiang Qin ◽  
Yanhua Zhao ◽  
Baoyindureng Wu

The Wiener index [Formula: see text] of a connected graph [Formula: see text] is the sum of distances of all pairs of vertices in [Formula: see text]. In this paper, we show that for any even positive integer [Formula: see text], and [Formula: see text], if [Formula: see text] is a [Formula: see text]-connected graph of order [Formula: see text], then [Formula: see text], where [Formula: see text] is the [Formula: see text]th power of a graph [Formula: see text]. This partially answers an old problem of Gutman and Zhang.


Author(s):  
Nopparat Pleanmani ◽  
Somnuek Worawiset

Let [Formula: see text] be a connected graph. For a configuration of pebbles on the vertices of [Formula: see text], a pebbling move on [Formula: see text] is the process of taking two pebbles from a vertex and adding one of them on an adjacent vertex. The pebbling number of [Formula: see text], denoted by [Formula: see text], is the least number of pebbles to guarantee that for any configuration of pebbles on [Formula: see text] and arbitrary vertex [Formula: see text], there is a sequence of pebbling movement that places at least one pebble on [Formula: see text]. The graph [Formula: see text] is said to be of Class 0 if its pebbling number equals its order. For a Class [Formula: see text] connected graph [Formula: see text], we improve a recent upper bound for [Formula: see text] in terms of [Formula: see text].


2019 ◽  
Vol 12 (01) ◽  
pp. 2050004
Author(s):  
J. John ◽  
M. S. Malchijah Raj

A Steiner set [Formula: see text] of a connected graph [Formula: see text] of order [Formula: see text] is a restrained Steiner set if either [Formula: see text] or the subgraph [Formula: see text] has no isolated vertices. The minimum cardinality of a restrained Steiner set of [Formula: see text] is the restrained Steiner number of [Formula: see text], and is denoted by [Formula: see text]. A restrained Steiner set [Formula: see text] in a connected graph [Formula: see text] is called a minimal restrained Steiner set if no proper subset of [Formula: see text] is a restrained Steiner set of [Formula: see text]. The upper restrained Steiner number [Formula: see text] is the maximum cardinality of a minimal restrained Steiner set of [Formula: see text]. The upper restrained Steiner number of certain classes of graphs are determined. Connected graphs of order [Formula: see text] with upper restrained Steiner number [Formula: see text] or [Formula: see text] are characterized. It is shown that for every pair of integers [Formula: see text] and [Formula: see text], with [Formula: see text], there exists a connected graph [Formula: see text] such that [Formula: see text] and [Formula: see text]. Also, it is shown that for every pair of integers [Formula: see text] and [Formula: see text] with [Formula: see text] there exists a connected graph [Formula: see text] with [Formula: see text] and [Formula: see text], where [Formula: see text] is the upper restrained geodetic number of the graph [Formula: see text].


2020 ◽  
Vol 12 (02) ◽  
pp. 2050029
Author(s):  
R. Lenin

A set [Formula: see text] is a near geodetic set if for every [Formula: see text] in [Formula: see text] there exist some [Formula: see text] in [Formula: see text] with [Formula: see text] The near geodetic number [Formula: see text] is the minimum cardinality of a near geodetic set in [Formula: see text] A subset [Formula: see text] of a minimum near geodetic set [Formula: see text] is called the forcing subset of [Formula: see text] if [Formula: see text] is the unique minimum near geodetic set containing [Formula: see text]. The forcing number [Formula: see text] of [Formula: see text] in [Formula: see text] is the minimum cardinality of a forcing subset for [Formula: see text], while the forcing near geodetic number [Formula: see text] of [Formula: see text] is the smallest forcing number among all minimum near geodetic sets of [Formula: see text]. In this paper, we initiate the study of forcing near geodetic number of connected graphs. We characterize graphs with [Formula: see text]. Further, we compare the parameters geodetic number[Formula: see text] near geodetic number[Formula: see text] forcing near geodetic number and we proved that, for every positive integers [Formula: see text] and [Formula: see text] with [Formula: see text] and [Formula: see text], there exists a nontrivial connected graph [Formula: see text] with [Formula: see text] [Formula: see text] and [Formula: see text].


2014 ◽  
Vol 2014 ◽  
pp. 1-5
Author(s):  
Yongsheng Ye ◽  
Fang Liu ◽  
Caixia Shi

A pebbling move on a graphGconsists of taking two pebbles off one vertex and placing one pebble on an adjacent vertex. The pebbling number of a connected graphG, denoted byf(G), is the leastnsuch that any distribution ofnpebbles onGallows one pebble to be moved to any specified but arbitrary vertex by a sequence of pebbling moves. This paper determines the pebbling numbers and the 2-pebbling property of the middle graph of fan graphs.


Sign in / Sign up

Export Citation Format

Share Document