scholarly journals On Nonlocal Computation of Eigenfrequencies of Beams Using Finite Difference and Finite Element Methods

2015 ◽  
Vol 15 (07) ◽  
pp. 1540008 ◽  
Author(s):  
Noël Challamel ◽  
Vincent Picandet ◽  
Issac Elishakoff ◽  
Chien Ming Wang ◽  
Bernard Collet ◽  
...  

In this paper, we show that two numerical methods, specifically the finite difference method and the finite element method applied to continuous beam dynamics problems, can be asymptotically investigated by some kind of enriched continuum approach (gradient elasticity or nonlocal elasticity). The analysis is restricted to the vibrations of elastic beams, and more specifically the computation of the natural frequencies for each numerical method. The analogy between the finite numerical approaches and the equivalent enriched continuum is demonstrated, using a continualization procedure, which converts the discrete numerical problem into a continuous one. It is shown that the finite element problem can be transformed into a system of finite difference equations. The convergence rate of the finite numerical approaches is quantified by an equivalent Rayleigh's quotient. We also present some exact analytical solutions for a first-order finite difference method, a higher-order finite difference method or a cubic Hermitian finite element, valid for arbitrary number of nodes or segments. The comparison between the exact numerical solution and the approximated nonlocal approaches shows the efficiency of the continualization methodology. These analogies between enriched continuum and finite numerical schemes provide a new attractive framework for potential applications of enriched continua in computational mechanics.

2014 ◽  
Vol 11 (1) ◽  
pp. 73-84 ◽  
Author(s):  
Dusan Topalovic ◽  
Stefan Pavlovic ◽  
Nemanja Cukaric ◽  
Milan Tadic

The finite-difference and finite-element methods are employed to solve the one-dimensional single-band Schr?dinger equation in the planar and cylindrical geometries. The analyzed geometries correspond to semiconductor quantum wells and cylindrical quantum wires. As a typical example, the GaAs/AlGaAs system is considered. The approximation of the lowest order is employed in the finite-difference method and linear shape functions are employed in the finite-element calculations. Deviations of the computed ground state electron energy in a rectangular quantum well of finite depth, and for the linear harmonic oscillator are determined as function of the grid size. For the planar geometry, the modified P?schl-Teller potential is also considered. Even for small grids, having more than 20 points, the finite-element method is found to offer better accuracy than the finite-difference method. Furthermore, the energy levels are found to converge faster towards the accurate value when the finite-element method is employed for calculation. The optimal dimensions of the domain employed for solving the Schr?dinger equation are determined as they vary with the grid size and the ground-state energy.


2011 ◽  
Vol 243-249 ◽  
pp. 2638-2642
Author(s):  
Xu Dong Cheng ◽  
Wen Shan Peng ◽  
Lei Liu

This paper adopts the Finite-difference method to research the distribution of ground additional stress and distortion in differently isotropic and non-isotropic foundation conditions, and uses the Finite-difference method to compare with the Finite-element method and the three-dimensional settlement method used by the code. Through comparative analysis, the reliability and superiority of Finite-difference method used for calculating ground additional stress and settlement are justified.


2012 ◽  
Vol 518-523 ◽  
pp. 2820-2824
Author(s):  
Yi Ni Guo ◽  
Yan Zhang ◽  
Jian Wang ◽  
Ye Huang

The finite difference method that is the finite element method is used to solve the plane continuous problems. In this article, the theory and method of the finite difference method, as well as the application on the boundary problem are introduced. By analyzing the potential flew field equation and liquid diffusion equation, they are discreted using the difference method and the numerical analysis under certain boundary condition is conducted. In air pollution, the smoke in the diffusion is typical planar continuous problems. In this paper, the finite difference method is used to analyse and simulate the spread of the smoke.


2010 ◽  
Vol 2010 ◽  
pp. 1-13 ◽  
Author(s):  
Debasis Deb ◽  
Kamal C. Das

Numerical procedure based on finite element method (FEM) and finite difference method (FDM) for the analysis of bolt-grout interactions are introduced in this paper. The finite element procedure incorporates elasto-plastic concepts with Hoek and Brown yield criterion and has been applied for rock mass. Bolt-grout interactions are evaluated based on finite difference method and are embedded in the elasto-plastic procedures of FEM. The experimental validation of the proposed FEM-FDM procedures and numerical examples of a bolted tunnel are provided to demonstrate the efficacy of the proposed method for practical applications.


Sign in / Sign up

Export Citation Format

Share Document