scholarly journals TOWARDS A MORSE THEORY FOR RANDOM DYNAMICAL SYSTEMS

2004 ◽  
Vol 04 (03) ◽  
pp. 277-296 ◽  
Author(s):  
HANS CRAUEL ◽  
LUU HOANG DUC ◽  
STEFAN SIEGMUND

A generalization of the concepts of deterministic Morse theory to random dynamical systems is presented. Using the notions of attraction and repulsion in probability, the main building blocks of Morse theory such as attractor–repeller pairs, Morse sets, and the Morse decomposition are obtained for random dynamical systems.

2008 ◽  
Vol 08 (04) ◽  
pp. 625-641 ◽  
Author(s):  
ZHENXIN LIU ◽  
SHUGUAN JI ◽  
MENGLONG SU

In the stability theory of dynamical systems, Lyapunov functions play a fundamental role. In this paper, we study the attractor–repeller pair decomposition and Morse decomposition for compact metric space in the random setting. In contrast to [7,17], by introducing slightly stronger definitions of random attractor and repeller, we characterize attractor–repeller pair decompositions and Morse decompositions for random dynamical systems through the existence of Lyapunov functions. These characterizations, we think, deserve to be known widely.


2009 ◽  
Vol 09 (02) ◽  
pp. 205-215 ◽  
Author(s):  
XIANFENG MA ◽  
ERCAI CHEN

The topological pressure is defined for subadditive sequence of potentials in bundle random dynamical systems. A variational principle for the topological pressure is set up in a very weak condition. The result may have some applications in the study of multifractal analysis for random version of nonconformal dynamical systems.


2003 ◽  
Vol 67 (2) ◽  
Author(s):  
Ying-Cheng Lai ◽  
Zonghua Liu ◽  
Lora Billings ◽  
Ira B. Schwartz

Nonlinearity ◽  
2017 ◽  
Vol 30 (7) ◽  
pp. 2835-2853 ◽  
Author(s):  
Anna Maria Cherubini ◽  
Jeroen S W Lamb ◽  
Martin Rasmussen ◽  
Yuzuru Sato

Sign in / Sign up

Export Citation Format

Share Document