Locally finite groups and configurations
Abstract Let 𝐺 be a discrete group. In 2001, Rosenblatt and Willis proved that 𝐺 is amenable if and only if every possible system of configuration equations admits a normalized solution. In this paper, we show independently that 𝐺 is locally finite if and only if every possible system of configuration equations admits a strictly positive solution. Also, we give a procedure to get equidecomposable subsets 𝐴 and 𝐵 of an infinite finitely generated or a locally finite group 𝐺 such that A ⊊ B A\subsetneq B , directly from a system of configuration equations not having a strictly positive solution.