ON SEMITRANSITIVE JORDAN ALGEBRAS OF MATRICES

2011 ◽  
Vol 10 (02) ◽  
pp. 319-333 ◽  
Author(s):  
J. BERNIK ◽  
R. DRNOVŠEK ◽  
D. KOKOL BUKOVŠEK ◽  
T. KOŠIR ◽  
M. OMLADIČ ◽  
...  

A set [Formula: see text] of linear operators on a vector space is said to be semitransitive if, given nonzero vectors x, y, there exists [Formula: see text] such that either Ax = y or Ay = x. In this paper we consider semitransitive Jordan algebras of operators on a finite-dimensional vector space over an algebraically closed field of characteristic not two. Two of our main results are: (1) Every irreducible semitransitive Jordan algebra is actually transitive. (2) Every semitransitive Jordan algebra contains, up to simultaneous similarity, the upper triangular Toeplitz algebra, i.e. the unital (associative) algebra generated by a nilpotent operator of maximal index.

ISRN Algebra ◽  
2012 ◽  
Vol 2012 ◽  
pp. 1-11
Author(s):  
Mohamed Benslimane ◽  
Abdelhadi Moutassim

Let be a real or complex algebra. Assuming that a vector space is endowed with a pre-Hilbert norm satisfying for all . We prove that is finite dimensional in the following cases. (1) is a real weakly alternative algebra without divisors of zero. (2) is a complex powers associative algebra. (3) is a complex flexible algebraic algebra. (4) is a complex Jordan algebra. In the first case is isomorphic to or and is isomorphic to in the last three cases. These last cases permit us to show that if is a complex pre-Hilbert noncommutative Jordan algebra satisfying for all , then is finite dimensional and is isomorphic to . Moreover, we give an example of an infinite-dimensional real pre-Hilbert Jordan algebra with divisors of zero and satisfying for all .


1982 ◽  
Vol 25 (2) ◽  
pp. 133-139 ◽  
Author(s):  
R. J. H. Dawlings

IfMis a mathematical system and EndMis the set of singular endomorphisms ofM, then EndMforms a semigroup under composition of mappings. A number of papers have been written to determine the subsemigroupSMof EndMgenerated by the idempotentsEMof EndMfor different systemsM. The first of these was by J. M. Howie [4]; here the case ofMbeing an unstructured setXwas considered. Howie showed that ifXis finite, then EndX=Sx.


1970 ◽  
Vol 22 (2) ◽  
pp. 363-371 ◽  
Author(s):  
K. Singh

In this paper, we shall construct a vector space, called the (G, σ) space, which generalizes the tensor space, the Grassman space, and the symmetric space. Then we shall determine a necessary and sufficient condition that the (G, σ) product of the vectors x1, x2, …, xn is zero.1. Let G be a permutation group on I = {1, 2, …, n} and F, an arbitrary field. Let σ be a linear character of G, i.e., σ is a homomorphism of G into the multiplicative group F* of F.For each i ∈ I, let Vi be a finite-dimensional vector space over F. Consider the Cartesian product W = V1 × V2 × … × Vn.1.1. Definition. W is called a G-set if and only if Vi = Vg(i) for all i ∊ I, and for all g ∊ G.


1961 ◽  
Vol 4 (3) ◽  
pp. 261-264
Author(s):  
Jonathan Wild

Let E be a finite dimensional vector space over an arbitrary field. In E a bilinear form is given. It associates with every sub s pa ce V its right orthogonal sub space V* and its left orthogonal subspace *V. In general we cannot expect that dim V* = dim *V. However this relation will hold in some interesting special cases.


2016 ◽  
Vol 15 (09) ◽  
pp. 1650159
Author(s):  
Malika Ait Ben Haddou ◽  
Saïd Benayadi ◽  
Said Boulmane

Malcev–Poisson–Jordan algebra (MPJ-algebra) is defined to be a vector space endowed with a Malcev bracket and a Jordan structure which are satisfying the Leibniz rule. We describe such algebras in terms of a single bilinear operation, this class strictly contains alternative algebras. For a given Malcev algebra [Formula: see text], it is interesting to classify the Jordan structure ∘ on the underlying vector space of [Formula: see text] such that [Formula: see text] is an MPJ-algebra (∘ is called an MPJ-structure on Malcev algebra [Formula: see text]. In this paper we explicitly give all MPJ-structures on some interesting classes of Malcev algebras. Further, we introduce the concept of pseudo-Euclidean MPJ-algebras (PEMPJ-algebras) and we show how one can construct new interesting quadratic Lie algebras and pseudo-Euclidean Malcev (non-Lie) algebras from PEMPJ-algebras. Finally, we give inductive descriptions of nilpotent PEMPJ-algebras.


Sign in / Sign up

Export Citation Format

Share Document