RELATIVE COHERENCE OF RINGS

2012 ◽  
Vol 11 (03) ◽  
pp. 1250047
Author(s):  
LIXIN MAO ◽  
NANQING DING

Let R be a ring and τ a hereditary torsion theory for the category of all left R-modules. A right R-module M is called τ-flat if Tor 1(M, R/I) = 0 for any τ-finitely presented left ideal I. A left R-module N is said to be τ-f-injective in case Ext 1(R/I, N) = 0 for any τ-finitely presented left ideal I. R is called a left τ-coherent ring in case every τ-finitely presented left ideal is finitely presented. τ-coherent rings are characterized in terms of, among others, τ-flat and τ-f-injective modules. Some known results are extended.

2017 ◽  
Vol 16 (10) ◽  
pp. 1750187 ◽  
Author(s):  
Karima Alaoui Ismaili ◽  
David E. Dobbs ◽  
Najib Mahdou

Recently, Xiang and Ouyang defined a (commutative unital) ring [Formula: see text] to be Nil[Formula: see text]-coherent if each finitely generated ideal of [Formula: see text] that is contained in Nil[Formula: see text] is a finitely presented [Formula: see text]-module. We define and study Nil[Formula: see text]-coherent modules and special Nil[Formula: see text]-coherent modules over any ring. These properties are characterized and their basic properties are established. Any coherent ring is a special Nil[Formula: see text]-coherent ring and any special Nil[Formula: see text]-coherent ring is a Nil[Formula: see text]-coherent ring, but neither of these statements has a valid converse. Any reduced ring is a special Nil[Formula: see text]-coherent ring (regardless of whether it is coherent). Several examples of Nil[Formula: see text]-coherent rings that are not special Nil[Formula: see text]-coherent rings are obtained as byproducts of our study of the transfer of the Nil[Formula: see text]-coherent and the special Nil[Formula: see text]-coherent properties to trivial ring extensions and amalgamated algebras.


2015 ◽  
Vol 22 (02) ◽  
pp. 349-360
Author(s):  
Dongdong Zhang ◽  
Baiyu Ouyang

Let R be a ring, n, d be fixed non-negative integers, [Formula: see text] the class of (n,d)-injective left R-modules, and [Formula: see text] the class of (n,d)-flat right R-modules. In this paper, we prove that if R is a left n-coherent ring and m ≥ 2, then [Formula: see text] if and only if [Formula: see text], if and only if Ext m+k(M,N) = 0 for all left R-modules M, N and all k ≥ -1, if and only if Ext m-1(M,N) = 0 for all left R-modules M, N. Meanwhile, we prove that if R is a left n-coherent ring, then − ⊗ − is right balanced on [Formula: see text] by [Formula: see text], and investigate the global right [Formula: see text]-dimension of [Formula: see text] and the global right [Formula: see text]-dimension of [Formula: see text] by right derived functors of − ⊗ −. Some known results are obtained as corollaries.


2005 ◽  
Vol 12 (01) ◽  
pp. 149-160 ◽  
Author(s):  
Xiaoxiang Zhang ◽  
Jianlong Chen ◽  
Juan Zhang

Let R be a ring. For two fixed positive integers m and n, a right R-module M is called (m,n)-injective in case every right R-homomorphism from an n-generated submodule of Rm to M extends to one from Rm to M. R is said to be left (m,n)-coherent if each n-generated submodule of the left R-module Rm is finitely presented. In this paper, we give some new characterizations of (m,n)-injective modules. We also derive various equivalent conditions for a ring to be left (m,n)-coherent. Some known results on coherent rings are obtained as corollaries.


1967 ◽  
Vol 8 (2) ◽  
pp. 123-126 ◽  
Author(s):  
Morton E. Harris

According to Bourbaki [1, pp. 62–63, Exercise 11], a left (resp. right) A-module M is said to be pseudo-coherent if every finitely generated submodule of M is finitely presented, and is said to be coherent if it is both pseudo-coherent and finitely generated. This Bourbaki reference contains various results on pseudo-coherent and coherent modules. Then, in [1, p. 63, Exercise 12], a ring which as a left (resp. right) module over itself is coherent is said to be a left (resp. right) coherent ring, and various results on and examples of coherent rings are presented. The result stated in [1, p. 63, Exercise 12a] is a basic theorem of [2] and first appeared there. A variety of results on and examples of coherent rings and modules are presented in [3].


2009 ◽  
Vol 08 (02) ◽  
pp. 139-155 ◽  
Author(s):  
NANQING DING ◽  
YUANLIN LI ◽  
LIXIN MAO

Let R be a ring. Recall that a left R-module M is coherent if every finitely generated submodule of M is finitely presented. R is a left coherent ring if the left R-module RR is coherent. In this paper, we say that R is left J-coherent if its Jacobson radical J(R) is a coherent left R-module. J-injective and J-flat modules are introduced to investigate J-coherent rings. Necessary and sufficient conditions for R to be left J-coherent are given. It is shown that there are many similarities between coherent and J-coherent rings. J-injective and J-flat dimensions are also studied.


1973 ◽  
Vol 8 (2) ◽  
pp. 233-239 ◽  
Author(s):  
J.M. Campbell

Chase has given several characterizations of a right coherent ring, among which are: every direct product of copies of the ring is left-flat; and every finitely generated submodule of a free right module is finitely related. We extend his results to obtain conditions for the ring of quotients of a ring with respect to a torsion theory to be coherent.


2020 ◽  
Vol 2020 ◽  
pp. 1-5
Author(s):  
Zhu Zhanmin

Let R be a ring, τ=T,ℱ a hereditary torsion theory of mod-R, and n a positive integer. Then, R is called right τ-n-coherent if every n-presented right R-module is τ,n+1-presented. We present some characterizations of right τ-n-coherent rings, as corollaries, and some characterizations of right n-coherent rings and right τ-coherent rings are obtained.


1996 ◽  
Vol 183 (1) ◽  
pp. 217-230 ◽  
Author(s):  
R.R. Colby ◽  
K.R. Fuller

2018 ◽  
Vol 28 (06) ◽  
pp. 959-977 ◽  
Author(s):  
Tiwei Zhao ◽  
Zenghui Gao ◽  
Zhaoyong Huang

Let [Formula: see text] be an integer. We introduce the notions of [Formula: see text]-FP-gr-injective and [Formula: see text]-gr-flat modules. Then we investigate the properties of these modules by using the properties of special finitely presented graded modules and obtain some equivalent characterizations of [Formula: see text]-gr-coherent rings in terms of [Formula: see text]-FP-gr-injective and [Formula: see text]-gr-flat modules. Moreover, we prove that the pairs (gr-[Formula: see text], gr-[Formula: see text]) and (gr-[Formula: see text], gr-[Formula: see text]) are duality pairs over left [Formula: see text]-coherent rings, where gr-[Formula: see text] and gr-[Formula: see text] denote the subcategories of [Formula: see text]-FP-gr-injective left [Formula: see text]-modules and [Formula: see text]-gr-flat right [Formula: see text]-modules respectively. As applications, we obtain that any graded left (respectively, right) [Formula: see text]-module admits an [Formula: see text]-FP-gr-injective (respectively, [Formula: see text]-gr-flat) cover and preenvelope.


2019 ◽  
Vol 19 (03) ◽  
pp. 2050050 ◽  
Author(s):  
Yanjiong Yang ◽  
Xiaoguang Yan

In this paper, we study the conditions under which a module is a strict Mittag–Leffler module over the class [Formula: see text] of Gorenstein injective modules. To this aim, we introduce the notion of [Formula: see text]-projective modules and prove that over noetherian rings, if a module can be expressed as the direct limit of finitely presented [Formula: see text]-projective modules, then it is a strict Mittag–Leffler module over [Formula: see text]. As applications, we prove that if [Formula: see text] is a two-sided noetherian ring, then [Formula: see text] is a covering class closed under pure submodules if and only if every injective module is strict Mittag–Leffler over [Formula: see text].


Sign in / Sign up

Export Citation Format

Share Document