scholarly journals UNITARY GROUPS OVER LOCAL RINGS

2013 ◽  
Vol 13 (02) ◽  
pp. 1350093 ◽  
Author(s):  
J. CRUICKSHANK ◽  
A. HERMAN ◽  
R. QUINLAN ◽  
F. SZECHTMAN

We study hermitian forms and unitary groups defined over a local ring, not necessarily commutative, equipped with an involution. When the ring is finite we obtain formulae for the order of the unitary groups as well as their point stabilizers, and use these to compute the degrees of the irreducible constituents of the Weil representation of a unitary group associated to a ramified quadratic extension of a finite local ring.

2002 ◽  
Vol 54 (6) ◽  
pp. 1229-1253 ◽  
Author(s):  
Roderick Gow ◽  
Fernando Szechtman

AbstractLetR/R be a quadratic extension of finite, commutative, local and principal rings of odd characteristic. Denote byUn(R) the unitary group of ranknassociated toR/R. The Weil representation ofUn(R) is defined and its character is explicitly computed.


2017 ◽  
Vol 234 ◽  
pp. 139-169
Author(s):  
ERIC HOFMANN

For the modular variety attached to an arithmetic subgroup of an indefinite unitary group of signature $(1,n+1)$, with $n\geqslant 1$, we study Heegner divisors in the local Picard group over a boundary component of a compactification. For this purpose, we introduce local Borcherds products. We obtain a precise criterion for local Heegner divisors to be torsion elements in the Picard group, and further, as an application, we show that the obstructions to a local Heegner divisor being a torsion element can be described by certain spaces of vector-valued elliptic cusp forms, transforming under a Weil representation.


2015 ◽  
Vol 22 (01) ◽  
pp. 73-82 ◽  
Author(s):  
Houyi Yu ◽  
Tongsuo Wu ◽  
Weiping Gu

In this paper, a necessary and sufficient condition is given for a commutative Artinian local ring whose annihilating-ideal graph is a star graph. Also, a complete characterization is established for a finite local ring whose annihilating-ideal graph is a star graph.


2009 ◽  
Vol 05 (07) ◽  
pp. 1247-1309 ◽  
Author(s):  
PING-SHUN CHAN ◽  
YUVAL Z. FLICKER

Let F be a number field or a p-adic field of odd residual characteristic. Let E be a quadratic extension of F, and F' an odd degree cyclic field extension of F. We establish a base-change functorial lifting of automorphic (respectively, admissible) representations from the unitary group U (3, E/F) to the unitary group U (3, F' E/F'). As a consequence, we classify, up to certain restrictions, the packets of U (3, F' E/F') which contain irreducible automorphic (respectively, admissible) representations invariant under the action of the Galois group Gal (F' E/E). We also determine the invariance of individual representations. This work is the first study of base change into an algebraic group whose packets are not all singletons, and which does not satisfy the rigidity, or "strong multiplicity one", theorem. Novel phenomena are encountered: e.g. there are invariant packets where not every irreducible automorphic (respectively, admissible) member is Galois-invariant. The restriction that the residual characteristic of the local fields be odd may be removed once the multiplicity one theorem for U(3) is proved to hold unconditionally without restriction on the dyadic places.


Author(s):  
A. Mitra ◽  
Omer Offen

We study $\text{Sp}_{2n}(F)$ -distinction for representations of the quasi-split unitary group $U_{2n}(E/F)$ in $2n$ variables with respect to a quadratic extension $E/F$ of $p$ -adic fields. A conjecture of Dijols and Prasad predicts that no tempered representation is distinguished. We verify this for a large family of representations in terms of the Mœglin–Tadić classification of the discrete series. We further study distinction for some families of non-tempered representations. In particular, we exhibit $L$ -packets with no distinguished members that transfer under base change to $\text{Sp}_{2n}(E)$ -distinguished representations of $\text{GL}_{2n}(E)$ .


1969 ◽  
Vol 21 ◽  
pp. 106-135 ◽  
Author(s):  
Norbert H. J. Lacroix

The problem of classifying the normal subgroups of the general linear group over a field was solved in the general case by Dieudonné (see 2 and 3). If we consider the problem over a ring, it is trivial to see that there will be more normal subgroups than in the field case. Klingenberg (4) has investigated the situation over a local ring and has shown that they are classified by certain congruence groups which are determined by the ideals in the ring.Klingenberg's solution roughly goes as follows. To a given ideal , attach certain congruence groups and . Next, assign a certain ideal (called the order) to a given subgroup G. The main result states that if G is normal with order a, then ≧ G ≧ , that is, G satisfies the so-called ladder relation at ; conversely, if G satisfies the ladder relation at , then G is normal and has order .


2018 ◽  
Vol 61 (03) ◽  
pp. 705-725
Author(s):  
DIPANKAR GHOSH ◽  
TONY J. PUTHENPURAKAL

AbstractLet R be a d-dimensional Cohen–Macaulay (CM) local ring of minimal multiplicity. Set S := R/(f), where f := f1,. . .,fc is an R-regular sequence. Suppose M and N are maximal CM S-modules. It is shown that if ExtSi(M, N) = 0 for some (d + c + 1) consecutive values of i ⩾ 2, then ExtSi(M, N) = 0 for all i ⩾ 1. Moreover, if this holds true, then either projdimR(M) or injdimR(N) is finite. In addition, a counterpart of this result for Tor-modules is provided. Furthermore, we give a number of necessary and sufficient conditions for a CM local ring of minimal multiplicity to be regular or Gorenstein. These conditions are based on vanishing of certain Exts or Tors involving homomorphic images of syzygy modules of the residue field.


Author(s):  
Yinghwa Wu

Throughout, (R, m) will denote a d-dimensional CohenMacaulay (CM for short) local ring having an infinite residue field and I an m-primary ideal in R. Recall that an ideal J I is said to be a reduction of I if Ir+1 = JIr for some r 0, and a reduction J of I is called a minimal reduction of I if J is generated by a system of parameters. The concepts of reduction and minimal reduction were first introduced by Northcott and Rees12. If J is a reduction of I, define the reduction number of I with respect to J, denoted by rj(I), to be min {r 0 Ir+1 = JIr}. The reduction number of I is defined as r(I) = min {rj(I)J is a minimal reduction of I}. The reduction number r(I) is said to be independent if r(I) = rj(I) for every minimal reduction J of I.


Sign in / Sign up

Export Citation Format

Share Document