scholarly journals Finite groups with an automorphism inverting, squaring or cubing a non-negligible fraction of elements

2019 ◽  
Vol 18 (03) ◽  
pp. 1950055 ◽  
Author(s):  
Alexander Bors

Finite groups with an automorphism mapping a sufficiently large proportion of elements to their inverses, squares and cubes have been studied for a long time, and the gist of the results on them is that they are “close to being abelian”. In this paper, we consider finite groups [Formula: see text] such that, for a fixed but arbitrary [Formula: see text], some automorphism of [Formula: see text] maps at least [Formula: see text] many elements of [Formula: see text] to their inverses, squares and cubes. We will relate these conditions to some parameters that measure, intuitively speaking, how far the group [Formula: see text] is from being solvable, nilpotent or abelian; most prominently the commuting probability of [Formula: see text], i.e. the probability that two independently uniformly randomly chosen elements of [Formula: see text] commute. To this end, we will use various counting arguments, the classification of the finite simple groups and some of its consequences, as well as a classical result from character theory.

Author(s):  
Juan Martínez ◽  
Alexander Moretó

In 2014, Baumslag and Wiegold proved that a finite group G is nilpotent if and only if o(xy) = o(x)o(y) for every x, y ∈ G with (o(x), o(y)) = 1. This has led to a number of results that characterize the nilpotence of a group (or the existence of nilpotent Hall subgroups, or the existence of normal Hall subgroups) in terms of prime divisors of element orders. Here, we look at these results with a new twist. The first of our main results asserts that G is nilpotent if and only if o(xy) ⩽ o(x)o(y) for every x, y ∈ G of prime power order with (o(x), o(y)) = 1. As an immediate consequence, we recover the Baumslag–Wiegold theorem. The proof of this result is elementary. We prove some variations of this result that depend on the classification of finite simple groups.


2006 ◽  
Vol 13 (03) ◽  
pp. 471-480
Author(s):  
Zhikai Zhang

In this paper, we first determine the structure of the Sylow p-subgroup P of a finite group G containing no elements of order 2p (p > 2), and then show that the Broué Abelian Defect Groups Conjecture is true for the principal p-block of G. The result depends on the classification of finite simple groups.


2005 ◽  
Vol 12 (02) ◽  
pp. 199-204
Author(s):  
Shirong Li ◽  
Rex S. Dark

Let G be a finite group and p an odd prime. Let [Formula: see text] be the set of proper subgroups M of G with |G:M| not a prime power and |G:M|p=1. In this paper, we investigate the structure of G if every member of [Formula: see text] is nilpotent. In particular, a new characterization of PSL(2,7) is obtained. The proof of the theorem depends on the classification of finite simple groups.


1977 ◽  
Vol 18 (2) ◽  
pp. 167-173 ◽  
Author(s):  
N. K. Dickson

Much work has been carried out on the classification of finite simple groups in terms of the structures of centralisers of involutions. However, it is sometimes the case that these classification results cannot be applied to particular problems even although information is available about one conjugacy class of involutions. The trouble is that information about the other classes can be almost non-existent. In this paper we deal with a situation where character theory can be employed to give a strong connection between the orders of centralisers of different classes of involutions, enabling information about one class to be used to give information about other classes. We prove the following result.


1988 ◽  
Vol 103 (2) ◽  
pp. 213-238 ◽  
Author(s):  
John D. Dixon ◽  
Brian Mortimer

Our object is to describe all of the-primitive permutation groups of degree less than 1000 together with some of their significant properties. We think that such a list is of interest in illustrating in concrete form the kinds of primitive groups which arise, in suggesting conjectures about primitive groups, and in settling small exceptional cases which often occur in proofs of theorems about permutation groups. The range that we consider is large enough to allow examples of most of the types of primitive group to appear. Earlier lists (of varying completeness and accuracy) of primitive groups of degree d have been published by: C. Jordan (1872) [21] ford≤ 17, by W. Burnside (1897) [5] ford≤ 8, by Manning (1929) [34–38] ford≤ 15, by C. C. Sims (1970) [45] ford≤ 20, and by B. A. Pogorelev (1980) [42] ford≤ 50. Unpublished lists have also been prepared by C. C. Sims ford≤ 50 and by Mizutani[41] ford≤ 48. Using the classification of finite simple groups which was completed in 1981 we have been able to extend the list much further. Our task has been greatly simplified by the detailed information about many finite simple groups which is available in theAtlas of Finite Groupswhich we will refer to as theAtlas[8].


2005 ◽  
Vol 78 (2) ◽  
pp. 291-295 ◽  
Author(s):  
László Héthelyi ◽  
Burkhard Külshammer

AbstractWe show that, for any positive integer k, there are only finitely many finite groups, up to isomorphism, with exactly k conjugacy classes of elements of prime power order. This generalizes a result of E. Landau from 1903. The proof of our generalization makes use of the classification of finite simple groups.


2020 ◽  
Vol 23 (6) ◽  
pp. 999-1016
Author(s):  
Anatoly S. Kondrat’ev ◽  
Natalia V. Maslova ◽  
Danila O. Revin

AbstractA subgroup H of a group G is said to be pronormal in G if H and {H^{g}} are conjugate in {\langle H,H^{g}\rangle} for every {g\in G}. In this paper, we determine the finite simple groups of type {E_{6}(q)} and {{}^{2}E_{6}(q)} in which all the subgroups of odd index are pronormal. Thus, we complete a classification of finite simple exceptional groups of Lie type in which all the subgroups of odd index are pronormal.


2021 ◽  
Vol 13 (3) ◽  
pp. 59
Author(s):  
Nader Taffach

In this paper, we study the problem of how a finite group can be generated by some subgroups. In order to the finite simple groups, we show that any finite non-abelian simple group can be generated by two Sylow p1 - and p_2 -subgroups, where p_1  and p_2  are two different primes. We also show that for a given different prime numbers p  and q , any finite group can be generated by a Sylow p -subgroup and a q -subgroup.


Author(s):  
Zhenfeng Wu

Denote by [Formula: see text] the number of Sylow [Formula: see text]-subgroups of [Formula: see text]. For every subgroup [Formula: see text] of [Formula: see text], it is easy to see that [Formula: see text], but [Formula: see text] does not divide [Formula: see text] in general. Following [W. Guo and E. P. Vdovin, Number of Sylow subgroups in finite groups, J. Group Theory 21(4) (2018) 695–712], we say that a group [Formula: see text] satisfies DivSyl(p) if [Formula: see text] divides [Formula: see text] for every subgroup [Formula: see text] of [Formula: see text]. In this paper, we show that “almost for every” finite simple group [Formula: see text], there exists a prime [Formula: see text] such that [Formula: see text] does not satisfy DivSyl(p).


2003 ◽  
Vol 171 ◽  
pp. 197-206
Author(s):  
Inna Korchagina

AbstractThis paper is a contribution to the “revision” project of Gorenstein, Lyons and Solomon, whose goal is to produce a unified proof of the Classification of Finite Simple Groups.


Sign in / Sign up

Export Citation Format

Share Document