Finite groups with a unique non-abelian proper subgroup

2019 ◽  
Vol 18 (11) ◽  
pp. 1950210
Author(s):  
Bijan Taeri ◽  
Fatemeh Tayanloo-Beyg

In this paper we classify finite non-abelian groups having a unique non-abelian proper subgroup.

Author(s):  
Jiuya Wang

AbstractElementary abelian groups are finite groups in the form of {A=(\mathbb{Z}/p\mathbb{Z})^{r}} for a prime number p. For every integer {\ell>1} and {r>1}, we prove a non-trivial upper bound on the {\ell}-torsion in class groups of every A-extension. Our results are pointwise and unconditional. This establishes the first case where for some Galois group G, the {\ell}-torsion in class groups are bounded non-trivially for every G-extension and every integer {\ell>1}. When r is large enough, the unconditional pointwise bound we obtain also breaks the previously best known bound shown by Ellenberg and Venkatesh under GRH.


2018 ◽  
Vol 17 (08) ◽  
pp. 1850146 ◽  
Author(s):  
Sudip Bera ◽  
A. K. Bhuniya

Given a group [Formula: see text], the enhanced power graph of [Formula: see text], denoted by [Formula: see text], is the graph with vertex set [Formula: see text] and two distinct vertices [Formula: see text] and [Formula: see text] are edge connected in [Formula: see text] if there exists [Formula: see text] such that [Formula: see text] and [Formula: see text] for some [Formula: see text]. Here, we show that the graph [Formula: see text] is complete if and only if [Formula: see text] is cyclic; and [Formula: see text] is Eulerian if and only if [Formula: see text] is odd. We characterize all abelian groups and all non-abelian [Formula: see text]-groups [Formula: see text] such that [Formula: see text] is dominatable. Besides, we show that there is a one-to-one correspondence between the maximal cliques in [Formula: see text] and the maximal cyclic subgroups of [Formula: see text].


1973 ◽  
Vol 16 (3) ◽  
pp. 405-415
Author(s):  
Gerard Elie Cohen

An inverse limit of finite groups has been called in the literature a pro-finite group and we have extensive studies of profinite groups from the cohomological point of view by J. P. Serre. The general theory of non-abelian modules has not yet been developed and therefore we consider a generalization of profinite abelian groups. We study inverse systems of discrete finite length R-modules. Profinite modules are inverse limits of discrete finite length R-modules with the inverse limit topology.


1996 ◽  
Vol 39 (3) ◽  
pp. 294-307 ◽  
Author(s):  
Goansu Kim

AbstractWe show that polygonal products of polycyclic-by-finite groups amalgamating central cyclic subgroups, with trivial intersections, are conjugacy separable. Thus polygonal products of finitely generated abelian groups amalgamating cyclic subgroups, with trivial intersections, are conjugacy separable. As a corollary of this, we obtain that the group A1 *〈a1〉A2 *〈a2〉 • • • *〈am-1〉Am is conjugacy separable for the abelian groups Ai.


2019 ◽  
Vol 22 (3) ◽  
pp. 515-527
Author(s):  
Bret J. Benesh ◽  
Dana C. Ernst ◽  
Nándor Sieben

AbstractWe study an impartial game introduced by Anderson and Harary. The game is played by two players who alternately choose previously-unselected elements of a finite group. The first player who builds a generating set from the jointly-selected elements wins. We determine the nim-numbers of this game for finite groups of the form{T\times H}, whereTis a 2-group andHis a group of odd order. This includes all nilpotent and hence abelian groups.


2016 ◽  
Vol 12 (06) ◽  
pp. 1509-1518 ◽  
Author(s):  
Yongke Qu ◽  
Dongchun Han

Let [Formula: see text] be a finite abelian group of order [Formula: see text], and [Formula: see text] be the smallest prime dividing [Formula: see text]. Let [Formula: see text] be a sequence over [Formula: see text]. We say that [Formula: see text] is regular if for every proper subgroup [Formula: see text], [Formula: see text] contains at most [Formula: see text] terms from [Formula: see text]. Let [Formula: see text] be the smallest integer [Formula: see text] such that every regular sequence [Formula: see text] over [Formula: see text] of length [Formula: see text] forms an additive basis of [Formula: see text], i.e. [Formula: see text]. Recently, [Formula: see text] was determined for many abelian groups. In this paper, we determined [Formula: see text] for more abelian groups and characterize the structure of the regular sequence [Formula: see text] over [Formula: see text] of length [Formula: see text] and [Formula: see text].


2011 ◽  
Vol 53 (2) ◽  
pp. 401-410 ◽  
Author(s):  
LONG MIAO

AbstractA subgroup H is called weakly -supplemented in a finite group G if there exists a subgroup B of G provided that (1) G = HB, and (2) if H1/HG is a maximal subgroup of H/HG, then H1B = BH1 < G, where HG is the largest normal subgroup of G contained in H. In this paper we will prove the following: Let G be a finite group and P be a Sylow p-subgroup of G, where p is the smallest prime divisor of |G|. Suppose that P has a non-trivial proper subgroup D such that all subgroups E of P with order |D| and 2|D| (if P is a non-abelian 2-group, |P : D| > 2 and there exists D1 ⊴ E ≤ P with 2|D1| = |D| and E/D1 is cyclic of order 4) have p-nilpotent supplement or weak -supplement in G, then G is p-nilpotent.


2018 ◽  
Vol 28 (05) ◽  
pp. 837-875 ◽  
Author(s):  
Thomas Quinn-Gregson

An inverse semigroup [Formula: see text] is a semigroup in which every element has a unique inverse in the sense of semigroup theory, that is, if [Formula: see text] then there exists a unique [Formula: see text] such that [Formula: see text] and [Formula: see text]. We say that a countable inverse semigroup [Formula: see text] is a homogeneous (inverse) semigroup if any isomorphism between finitely generated (inverse) subsemigroups of [Formula: see text] extends to an automorphism of [Formula: see text]. In this paper, we consider both these concepts of homogeneity for inverse semigroups, and show when they are equivalent. We also obtain certain classifications of homogeneous inverse semigroups, in particular periodic commutative inverse semigroups. Our results may be seen as extending both the classification of homogeneous semilattices and the classification of certain classes of homogeneous groups, such as homogeneous abelian groups and homogeneous finite groups.


Author(s):  
A. M. Duguid ◽  
D. H. McLain

Let an element of a group be called an FC element if it has only a finite number of conjugates in the group. Baer(1) and Neumann (8) have discussed groups in which every element is FC, and called them FC-groups. Both Abelian and finite groups are trivially FC-groups; Neumann has studied the properties common to FC-groups and Abelian groups, and Baer the properties common to FC-groups and finite groups. Baer has also shown that, for an arbitrary group G, the set H1 of all FC elements is a characteristic subgroup. Haimo (3) has defined the FC-chain of a group G byHi/Hi−1 is the subgroup of all FC elements in G/Hi−1.


Sign in / Sign up

Export Citation Format

Share Document