Frobenius REA-groups and their Cayley graphs

Author(s):  
Lei Wang ◽  
Shou Hong Qiao

In this paper, we determine the automorphism groups of a class of Frobenius groups, and then solve that under what condition they are REA-groups. As an application, we construct a type of normal edge-transitive Cayley graph.

2021 ◽  
Vol 53 (2) ◽  
pp. 527-551
Author(s):  
Lei Wang ◽  
Yin Liu ◽  
Yanxiong Yan

2014 ◽  
Vol 2014 ◽  
pp. 1-4
Author(s):  
A. Assari ◽  
F. Sheikhmiri

A Cayley graph of a group G is called normal edge-transitive if the normalizer of the right representation of the group in the automorphism of the Cayley graph acts transitively on the set of edges of the graph. In this paper, we determine all connected normal edge-transitive Cayley graphs of the group U6n.


2018 ◽  
Vol 17 (07) ◽  
pp. 1850126 ◽  
Author(s):  
Hailin Liu ◽  
Lei Wang

A Cayley graph [Formula: see text] is called arc-transitive if its automorphism group [Formula: see text] is transitive on the set of arcs in [Formula: see text]. In this paper, we give a characterization of cubic arc-transitive Cayley graphs on a class of Frobenius groups.


2019 ◽  
Vol 17 (1) ◽  
pp. 513-518
Author(s):  
Hailin Liu

Abstract A Cayley graph Γ is said to be arc-transitive if its full automorphism group AutΓ is transitive on the arc set of Γ. In this paper we give a characterization of pentavalent arc-transitive Cayley graphs on a class of Frobenius groups with soluble vertex stabilizer.


Mathematics ◽  
2021 ◽  
Vol 9 (22) ◽  
pp. 2935
Author(s):  
Bo Ling ◽  
Wanting Li ◽  
Bengong Lou

A Cayley graph Γ=Cay(G,S) is said to be normal if the base group G is normal in AutΓ. The concept of the normality of Cayley graphs was first proposed by M.Y. Xu in 1998 and it plays a vital role in determining the full automorphism groups of Cayley graphs. In this paper, we construct an example of a 2-arc transitive hexavalent nonnormal Cayley graph on the alternating group A119. Furthermore, we determine the full automorphism group of this graph and show that it is isomorphic to A120.


2001 ◽  
Vol 71 (2) ◽  
pp. 223-232 ◽  
Author(s):  
Caiheng Li ◽  
Hyo-Seob Sim

AbstractThis paper inverstigates the automorphism groups of Cayley graphs of metracyclicp-gorups. A characterization is given of the automorphism groups of Cayley grahs of a metacyclicp-group for odd primep. In particular, a complete determiniation of the automophism group of a connected Cayley graph with valency less than 2pof a nonabelian metacyclicp-group is obtained as a consequence. In subsequent work, the result of this paper has been applied to solve several problems in graph theory.


Author(s):  
XIN GUI FANG ◽  
JIE WANG ◽  
SANMING ZHOU

Abstract A graph $\Gamma $ is called $(G, s)$ -arc-transitive if $G \le \text{Aut} (\Gamma )$ is transitive on the set of vertices of $\Gamma $ and the set of s-arcs of $\Gamma $ , where for an integer $s \ge 1$ an s-arc of $\Gamma $ is a sequence of $s+1$ vertices $(v_0,v_1,\ldots ,v_s)$ of $\Gamma $ such that $v_{i-1}$ and $v_i$ are adjacent for $1 \le i \le s$ and $v_{i-1}\ne v_{i+1}$ for $1 \le i \le s-1$ . A graph $\Gamma $ is called 2-transitive if it is $(\text{Aut} (\Gamma ), 2)$ -arc-transitive but not $(\text{Aut} (\Gamma ), 3)$ -arc-transitive. A Cayley graph $\Gamma $ of a group G is called normal if G is normal in $\text{Aut} (\Gamma )$ and nonnormal otherwise. Fang et al. [‘On edge transitive Cayley graphs of valency four’, European J. Combin.25 (2004), 1103–1116] proved that if $\Gamma $ is a tetravalent 2-transitive Cayley graph of a finite simple group G, then either $\Gamma $ is normal or G is one of the groups $\text{PSL}_2(11)$ , $\text{M} _{11}$ , $\text{M} _{23}$ and $A_{11}$ . However, it was unknown whether $\Gamma $ is normal when G is one of these four groups. We answer this question by proving that among these four groups only $\text{M} _{11}$ produces connected tetravalent 2-transitive nonnormal Cayley graphs. We prove further that there are exactly two such graphs which are nonisomorphic and both are determined in the paper. As a consequence, the automorphism group of any connected tetravalent 2-transitive Cayley graph of any finite simple group is determined.


10.37236/6417 ◽  
2018 ◽  
Vol 25 (3) ◽  
Author(s):  
Yan-Li Qin ◽  
Jin-Xin Zhou

A graph is said to be a bi-Cayley graph over a group $H$ if it admits $H$ as a group of automorphisms acting semiregularly on its vertices with two orbits. For a prime $p$, we call a bi-Cayley graph over a metacyclic $p$-group a bi-$p$-metacirculant. In this paper, the automorphism group of a connected cubic edge-transitive bi-$p$-metacirculant is characterized for an odd prime $p$, and the result reveals that a connected cubic edge-transitive bi-$p$-metacirculant exists only when $p=3$. Using this, a classification is given of connected cubic edge-transitive bi-Cayley graphs over an inner-abelian metacyclic $3$-group. As a result, we construct the first known infinite family of cubic semisymmetric graphs of order twice a $3$-power.


2015 ◽  
Vol 42 (3) ◽  
pp. 803-827 ◽  
Author(s):  
Brian P. Corr ◽  
Cheryl E. Praeger

1999 ◽  
Vol 60 (2) ◽  
pp. 207-220 ◽  
Author(s):  
Cheryl E. Praeger

An approach to analysing the family of Cayley graphs for a finite group G is given which identifies normal edge-transitive Cayley graphs as a sub-family of central importance. These are the Cayley graphs for G for which a subgroup of automorphisms exists which both normalises G and acts transitively on edges. It is shown that, for a nontrivial group G, each normal edge-transitive Cayley graph for G has at least one homomorphic image which is a normal edge-transitive Cayley graph for a characteristically simple quotient group of G. Moreover, given a normal edge-transitive Cayley graph ΓH for a quotient group G/H, necessary and sufficient conditions are obtained for the existence of a normal edge-transitive Cayley graph Γ for G which has ΓH as a homomorphic image, and a method for obtaining all such graphs Γ is given.


Sign in / Sign up

Export Citation Format

Share Document