scholarly journals Normal Edge-Transitive Cayley Graphs of the Group U6n

2014 ◽  
Vol 2014 ◽  
pp. 1-4
Author(s):  
A. Assari ◽  
F. Sheikhmiri

A Cayley graph of a group G is called normal edge-transitive if the normalizer of the right representation of the group in the automorphism of the Cayley graph acts transitively on the set of edges of the graph. In this paper, we determine all connected normal edge-transitive Cayley graphs of the group U6n.

Author(s):  
Lei Wang ◽  
Shou Hong Qiao

In this paper, we determine the automorphism groups of a class of Frobenius groups, and then solve that under what condition they are REA-groups. As an application, we construct a type of normal edge-transitive Cayley graph.


2013 ◽  
Vol 20 (03) ◽  
pp. 495-506 ◽  
Author(s):  
Jin-Xin Zhou ◽  
Mohsen Ghasemi

A Cayley graph Cay (G,S) on a group G with respect to a Cayley subset S is said to be normal if the right regular representation R(G) of G is normal in the full automorphism group of Cay (G,S). For a positive integer n, let Γn be a graph with vertex set {xi,yi|i ∈ ℤ2n} and edge set {{xi,xi+1}, {yi,yi+1}, {x2i,y2i+1}, {y2i,x2i+1}|i ∈ ℤ2n}. In this paper, it is shown that Γn is a Cayley graph and its full automorphism group is isomorphic to [Formula: see text] for n=2, and to [Formula: see text] for n > 2. Furthermore, we determine all pairs of G and S such that Γn= Cay (G,S) is non-normal for G. Using this, all connected cubic non-normal Cayley graphs of order 8p are constructed explicitly for each prime p.


Author(s):  
XIN GUI FANG ◽  
JIE WANG ◽  
SANMING ZHOU

Abstract A graph $\Gamma $ is called $(G, s)$ -arc-transitive if $G \le \text{Aut} (\Gamma )$ is transitive on the set of vertices of $\Gamma $ and the set of s-arcs of $\Gamma $ , where for an integer $s \ge 1$ an s-arc of $\Gamma $ is a sequence of $s+1$ vertices $(v_0,v_1,\ldots ,v_s)$ of $\Gamma $ such that $v_{i-1}$ and $v_i$ are adjacent for $1 \le i \le s$ and $v_{i-1}\ne v_{i+1}$ for $1 \le i \le s-1$ . A graph $\Gamma $ is called 2-transitive if it is $(\text{Aut} (\Gamma ), 2)$ -arc-transitive but not $(\text{Aut} (\Gamma ), 3)$ -arc-transitive. A Cayley graph $\Gamma $ of a group G is called normal if G is normal in $\text{Aut} (\Gamma )$ and nonnormal otherwise. Fang et al. [‘On edge transitive Cayley graphs of valency four’, European J. Combin.25 (2004), 1103–1116] proved that if $\Gamma $ is a tetravalent 2-transitive Cayley graph of a finite simple group G, then either $\Gamma $ is normal or G is one of the groups $\text{PSL}_2(11)$ , $\text{M} _{11}$ , $\text{M} _{23}$ and $A_{11}$ . However, it was unknown whether $\Gamma $ is normal when G is one of these four groups. We answer this question by proving that among these four groups only $\text{M} _{11}$ produces connected tetravalent 2-transitive nonnormal Cayley graphs. We prove further that there are exactly two such graphs which are nonisomorphic and both are determined in the paper. As a consequence, the automorphism group of any connected tetravalent 2-transitive Cayley graph of any finite simple group is determined.


10.37236/6417 ◽  
2018 ◽  
Vol 25 (3) ◽  
Author(s):  
Yan-Li Qin ◽  
Jin-Xin Zhou

A graph is said to be a bi-Cayley graph over a group $H$ if it admits $H$ as a group of automorphisms acting semiregularly on its vertices with two orbits. For a prime $p$, we call a bi-Cayley graph over a metacyclic $p$-group a bi-$p$-metacirculant. In this paper, the automorphism group of a connected cubic edge-transitive bi-$p$-metacirculant is characterized for an odd prime $p$, and the result reveals that a connected cubic edge-transitive bi-$p$-metacirculant exists only when $p=3$. Using this, a classification is given of connected cubic edge-transitive bi-Cayley graphs over an inner-abelian metacyclic $3$-group. As a result, we construct the first known infinite family of cubic semisymmetric graphs of order twice a $3$-power.


10.37236/207 ◽  
2009 ◽  
Vol 16 (1) ◽  
Author(s):  
Jin-Xin Zhou

A Cayley graph ${\rm Cay}(G,S)$ on a group $G$ is said to be normal if the right regular representation $R(G)$ of $G$ is normal in the full automorphism group of ${\rm Cay}(G,S)$. In this paper, all connected tetravalent non-normal Cayley graphs of order $4p$ are constructed explicitly for each prime $p$. As a result, there are fifteen sporadic and eleven infinite families of tetravalent non-normal Cayley graphs of order $4p$.


1999 ◽  
Vol 60 (2) ◽  
pp. 207-220 ◽  
Author(s):  
Cheryl E. Praeger

An approach to analysing the family of Cayley graphs for a finite group G is given which identifies normal edge-transitive Cayley graphs as a sub-family of central importance. These are the Cayley graphs for G for which a subgroup of automorphisms exists which both normalises G and acts transitively on edges. It is shown that, for a nontrivial group G, each normal edge-transitive Cayley graph for G has at least one homomorphic image which is a normal edge-transitive Cayley graph for a characteristically simple quotient group of G. Moreover, given a normal edge-transitive Cayley graph ΓH for a quotient group G/H, necessary and sufficient conditions are obtained for the existence of a normal edge-transitive Cayley graph Γ for G which has ΓH as a homomorphic image, and a method for obtaining all such graphs Γ is given.


2018 ◽  
Vol 49 (3) ◽  
pp. 183-194
Author(s):  
Ali Reza Ashrafi ◽  
Bijan Soleimani

Suppose $p$ and $q$ are odd prime numbers. In this paper, the connected Cayley graph of groups of order $3pq$, for primes $p$ and $q$, are investigated and all connected normal $\frac{1}{2}-$arc-transitive Cayley graphs of group of these orders will be classified.


2017 ◽  
Vol 24 (04) ◽  
pp. 541-550
Author(s):  
Xueyi Huang ◽  
Qiongxiang Huang ◽  
Lu Lu

Let Sndenote the symmetric group of degree n with n ≥ 3, S = { cn= (1 2 ⋯ n), [Formula: see text], (1 2)} and Γn= Cay(Sn, S) be the Cayley graph on Snwith respect to S. In this paper, we show that Γn(n ≥ 13) is a normal Cayley graph, and that the full automorphism group of Γnis equal to Aut(Γn) = R(Sn) ⋊ 〈Inn(ϕ) ≅ Sn× ℤ2, where R(Sn) is the right regular representation of Sn, ϕ = (1 2)(3 n)(4 n−1)(5 n−2) ⋯ (∊ Sn), and Inn(ϕ) is the inner isomorphism of Sninduced by ϕ.


10.37236/9934 ◽  
2021 ◽  
Vol 28 (3) ◽  
Author(s):  
Shu Jiao Song

In this paper we introduce and study a type of Cayley graph – subnormal Cayley graph. We prove that a subnormal 2-arc transitive Cayley graph is a normal Cayley graph or a normal cover of a complete bipartite graph $\mathbf{K}_{p^d,p^d}$ with $p$ prime. Then we obtain a generic method for constructing half-symmetric (namely edge transitive but not arc transitive) Cayley graphs.


ISRN Algebra ◽  
2011 ◽  
Vol 2011 ◽  
pp. 1-6
Author(s):  
Mehdi Alaeiyan ◽  
Siamak Firouzian ◽  
Mohsen Ghasemi

A Cayley graph of a finite group is called normal edge transitive if its automorphism group has a subgroup which both normalizes and acts transitively on edges. In this paper we determine all cubic, connected, and undirected edge-transitive Cayley graphs of dihedral groups, which are not normal edge transitive. This is a partial answer to the question of Praeger (1999).


Sign in / Sign up

Export Citation Format

Share Document