DESIGN OF CONTROLLABLE LEADER–FOLLOWER NETWORKS VIA MEMETIC ALGORITHMS

2021 ◽  
pp. 2150004
Author(s):  
SHAOPING XIAO ◽  
BAIKE SHE ◽  
SIDDHARTHA MEHTA ◽  
ZHEN KAN

In many engineered and natural networked systems, there has been great interest in leader selection and/or edge assignment during the optimal design of controllable networks. In this paper, we present our pioneering work in leader–follower network design via memetic algorithms, which focuses on minimizing the number of leaders or the amount of control energy while ensuring network controllability. We consider three problems in this paper: (1) selecting the minimum number of leaders in a pre-defined network with guaranteed network controllability; (2) selecting the leaders in a pre-defined network with the minimum control energy; and (3) assigning edges (interactions) between nodes to form a controllable leader–follower network with the minimum control energy. The proposed framework can be applied in designing signed, unsigned, directed, or undirected networks. It should be noted that this work is the first to apply memetic algorithms in the design of controllable networks. We chose memetic algorithms because they have been shown to be more efficient and more effective than the standard genetic algorithms in solving some optimization problems. Our simulation results provide an additional demonstration of their efficiency and effectiveness.

2013 ◽  
Vol 310 ◽  
pp. 609-613
Author(s):  
Ioana D. Balea ◽  
Radu Hulea ◽  
Georgios E. Stavroulakis

This paper presents an implementation of Eurocode load cases for discrete global optimization algorithm for planar structures based on the principles of finite element methods and genetic algorithms. The final optimal design is obtained using IPE sections chosen as feasible by the algorithm, from the available steel sections from industry. The algorithm is tested on an asymmetric planar steel frame with promising results.


2016 ◽  
pp. 450-475
Author(s):  
Dipti Singh ◽  
Kusum Deep

Due to their wide applicability and easy implementation, Genetic algorithms (GAs) are preferred to solve many optimization problems over other techniques. When a local search (LS) has been included in Genetic algorithms, it is known as Memetic algorithms. In this chapter, a new variant of single-meme Memetic Algorithm is proposed to improve the efficiency of GA. Though GAs are efficient at finding the global optimum solution of nonlinear optimization problems but usually converge slow and sometimes arrive at premature convergence. On the other hand, LS algorithms are fast but are poor global searchers. To exploit the good qualities of both techniques, they are combined in a way that maximum benefits of both the approaches are reaped. It lets the population of individuals evolve using GA and then applies LS to get the optimal solution. To validate our claims, it is tested on five benchmark problems of dimension 10, 30 and 50 and a comparison between GA and MA has been made.


2004 ◽  
Vol 12 (3) ◽  
pp. 327-353 ◽  
Author(s):  
Shawki Areibi ◽  
Zhen Yang

Combining global and local search is a strategy used by many successful hybrid optimization approaches. Memetic Algorithms (MAs) are Evolutionary Algorithms (EAs) that apply some sort of local search to further improve the fitness of individuals in the population. Memetic Algorithms have been shown to be very effective in solving many hard combinatorial optimization problems. This paper provides a forum for identifying and exploring the key issues that affect the design and application of Memetic Algorithms. The approach combines a hierarchical design technique, Genetic Algorithms, constructive techniques and advanced local search to solve VLSI circuit layout in the form of circuit partitioning and placement. Results obtained indicate that Memetic Algorithms based on local search, clustering and good initial solutions improve solution quality on average by 35% for the VLSI circuit partitioning problem and 54% for the VLSI standard cell placement problem.


2021 ◽  
Vol 17 ◽  
pp. 1160-1190
Author(s):  
Saeid Kohani ◽  
Peng Zong ◽  
Fengfan Yang

This research will analyze the tradeoffs between coverage optimization based on Position dilution of precision (PDOP) and cost of the launch vehicle. It adopts MATLAB and STK tools along with multiple objective genetic algorithms (MOGA) to explore the trade space for the constellation designs at different orbital altitudes. The objective of optimal design solutions is inferred to determine the economic and efficient LEO, MEO, HEO or hybrid constellations and simulation results are presented to optimize the design of satellite constellations. The benefits of this research are the optimization of satellite constellation design, which reduces costs and increases regional and global coverage with the least number of satellites. The result of this project is the optimization of the number of constellation satellites in several orbital planes in LEO orbit. Validations are based on reviewing the results of several simulations. The results of graphs and tables are presented in the last two sections and are taken from the results of several simulations.


Author(s):  
Dipti Singh ◽  
Kusum Deep

Due to their wide applicability and easy implementation, Genetic algorithms (GAs) are preferred to solve many optimization problems over other techniques. When a local search (LS) has been included in Genetic algorithms, it is known as Memetic algorithms. In this chapter, a new variant of single-meme Memetic Algorithm is proposed to improve the efficiency of GA. Though GAs are efficient at finding the global optimum solution of nonlinear optimization problems but usually converge slow and sometimes arrive at premature convergence. On the other hand, LS algorithms are fast but are poor global searchers. To exploit the good qualities of both techniques, they are combined in a way that maximum benefits of both the approaches are reaped. It lets the population of individuals evolve using GA and then applies LS to get the optimal solution. To validate our claims, it is tested on five benchmark problems of dimension 10, 30 and 50 and a comparison between GA and MA has been made.


1995 ◽  
Vol 29 (4) ◽  
pp. 39-56 ◽  
Author(s):  
S. Hurley ◽  
L. Moutinho ◽  
N.M. Stephens

Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2261
Author(s):  
Evgeniy Ganev ◽  
Boyan Ivanov ◽  
Natasha Vaklieva-Bancheva ◽  
Elisaveta Kirilova ◽  
Yunzile Dzhelil

This study proposes a multi-objective approach for the optimal design of a sustainable Integrated Biodiesel/Diesel Supply Chain (IBDSC) based on first- (sunflower and rapeseed) and second-generation (waste cooking oil and animal fat) feedstocks with solid waste use. It includes mixed-integer linear programming (MILP) models of the economic, environmental and social impact of IBDSC, and respective criteria defined in terms of costs. The purpose is to obtain the optimal number, sizes and locations of bio-refineries and solid waste plants; the areas and amounts of feedstocks needed for biodiesel production; and the transportation mode. The approach is applied on a real case study in which the territory of Bulgaria with its 27 districts is considered. Optimization problems are formulated for a 5-year period using either environmental or economic criteria and the remainder are defined as constraints. The obtained results show that in the case of the economic criterion, 14% of the agricultural land should be used for sunflower and 2% for rapeseed cultivation, while for the environmental case, 12% should be used for rapeseed and 3% for sunflower. In this case, the price of biodiesel is 14% higher, and the generated pollutants are 6.6% lower. The optimal transport for both cases is rail.


1999 ◽  
Vol 35 (3) ◽  
pp. 1742-1745 ◽  
Author(s):  
Yong-Hwan Oh ◽  
Tae-Kyung Chung ◽  
Min-Kyu Kim ◽  
Hyun-Kyo Jung

2021 ◽  
Vol 11 (5) ◽  
pp. 2042
Author(s):  
Hadi Givi ◽  
Mohammad Dehghani ◽  
Zeinab Montazeri ◽  
Ruben Morales-Menendez ◽  
Ricardo A. Ramirez-Mendoza ◽  
...  

Optimization problems in various fields of science and engineering should be solved using appropriate methods. Stochastic search-based optimization algorithms are a widely used approach for solving optimization problems. In this paper, a new optimization algorithm called “the good, the bad, and the ugly” optimizer (GBUO) is introduced, based on the effect of three members of the population on the population updates. In the proposed GBUO, the algorithm population moves towards the good member and avoids the bad member. In the proposed algorithm, a new member called ugly member is also introduced, which plays an essential role in updating the population. In a challenging move, the ugly member leads the population to situations contrary to society’s movement. GBUO is mathematically modeled, and its equations are presented. GBUO is implemented on a set of twenty-three standard objective functions to evaluate the proposed optimizer’s performance for solving optimization problems. The mentioned standard objective functions can be classified into three groups: unimodal, multimodal with high-dimension, and multimodal with fixed dimension functions. There was a further analysis carried-out for eight well-known optimization algorithms. The simulation results show that the proposed algorithm has a good performance in solving different optimization problems models and is superior to the mentioned optimization algorithms.


Sign in / Sign up

Export Citation Format

Share Document