scholarly journals Limits of the Stokes and Navier–Stokes equations in a punctured periodic domain

2019 ◽  
Vol 18 (02) ◽  
pp. 211-235
Author(s):  
Michel Chipot ◽  
Jérôme Droniou ◽  
Gabriela Planas ◽  
James C. Robinson ◽  
Wei Xue

We treat three problems on a two-dimensional “punctured periodic domain”: we take [Formula: see text], where [Formula: see text] and [Formula: see text] is the closure of an open connected set that is star-shaped with respect to [Formula: see text] and has a [Formula: see text] boundary. We impose periodic boundary conditions on the boundary of [Formula: see text], and Dirichlet boundary conditions on [Formula: see text]. In this setting we consider the Poisson equation, the Stokes equations, and the time-dependent Navier–Stokes equations, all with a fixed forcing function [Formula: see text], and examine the behavior of solutions as [Formula: see text]. In all three cases we show convergence of the solutions to those of the limiting problem, i.e. the problem posed on all of [Formula: see text] with periodic boundary conditions.

2013 ◽  
Vol 45 (3) ◽  
pp. 742-772
Author(s):  
G. N. Milstein ◽  
M. V. Tretyakov

We propose and study a number of layer methods for Navier‒Stokes equations (NSEs) with spatial periodic boundary conditions. The methods are constructed using probabilistic representations of solutions to NSEs and exploiting ideas of the weak sense numerical integration of stochastic differential equations. Despite their probabilistic nature, the layer methods are nevertheless deterministic.


2021 ◽  
Vol 2057 (1) ◽  
pp. 012072
Author(s):  
A N Kusyumov ◽  
S A Kusyumov ◽  
S A Mikhailov ◽  
E V Romanova

Abstract Unsteady 3D flow over a circular cylinder at Reynolds number of 3900 is studied numerically using the Navier-Stokes equations. Two formulations of the problem were considered: with boundary conditions corresponding to the flow around an isolated cylinder and with periodic boundary conditions to the flow behind a parallel circular cylinders grid. A comparative analysis of the integral and distributed characteristics of the flow around the cylinder and the spectral characteristics of the flow for both formulations of the problem is carried out.


2013 ◽  
Vol 45 (03) ◽  
pp. 742-772 ◽  
Author(s):  
G. N. Milstein ◽  
M. V. Tretyakov

We propose and study a number of layer methods for Navier‒Stokes equations (NSEs) with spatial periodic boundary conditions. The methods are constructed using probabilistic representations of solutions to NSEs and exploiting ideas of the weak sense numerical integration of stochastic differential equations. Despite their probabilistic nature, the layer methods are nevertheless deterministic.


Author(s):  
Joel D. Avrin

We obtain global existence and regularity of strong solutions to the incompressible Navier–Stokes equations for a variety of boundary conditions in such a way that the initial and forcing data can be large in the high-frequency eigenspaces of the Stokes operator. We do not require that the domain be thin as in previous analyses. But in the case of thin domains (and zero Dirichlet boundary conditions) our results represent a further improvement and refinement of previous results obtained.


Sign in / Sign up

Export Citation Format

Share Document