A density functional theory study of the hydration of calcium ions confined in the interlayer space of montmorillonites

2014 ◽  
Vol 13 (04) ◽  
pp. 1450028 ◽  
Author(s):  
Zhaoyang Lou ◽  
Houbin Liu ◽  
Yao Zhang ◽  
Yingfeng Meng ◽  
Qun Zeng ◽  
...  

The structures of Ca2+hydrates in the interlayer space of montmorillonites (MMT) were studied by periodic density functional theory (DFT) calculations under the GGA/PBE approximation. Affected by the internal surfaces, which are rich of negative charge, the Ca2+hydration exhibits different behaviors from that in gas phase. The Ca2+is located at the six-oxygen-ring (SOR) on the internal surface in dry MMT, while the incoming water molecules bind with the Ca2+, the O atoms on surface, and/or with each other. The water molecules have a tendency of forming a hydrogen bond (HB) network that connects the upper and lower surfaces. Attracted by surrounding water molecules, the Ca2+gradually moves outward with increasing number of water molecules. Moreover, the hydration energy (EH) of Ca2+is determined not only by the interaction between Ca2+and H2O , but also by that among Ca2+, H2O and the surfaces. As a result, the EHhas only small changes for additional incoming water molecules, in contrast to the great and monotonic decrease in gas phase.

2019 ◽  
Vol 233 (6) ◽  
pp. 881-894 ◽  
Author(s):  
Fumitaka Mafuné ◽  
Manami Abe ◽  
Satoshi Kudoh

Abstract The vibrational spectra of Pt3(H2O)m+ (m = 1–4) cluster were measured in the 3000–3800 cm−1 range via infrared photodissociation (IRPD) spectroscopy. The IRPD spectra were recorded through the photodissociation of Pt3(H2O)m+-Ar (m = 1–3) complexes and Pt3(H2O)4+ cations upon vibrational excitation. The spectra were compared to the vibrational spectra of several stable isomers obtained by density functional theory (DFT) calculations and the adsorption forms of the water molecules were subsequently discussed. The IRPD spectra of all the studied Pt3(H2O)m+ cations exhibited intense peaks at ∼3600 and 3700 cm−1. This suggested that the water molecules mainly adsorb onto the Pt clusters in molecular form and that each molecule binds directly to a Pt atom via its O atom side. For the water-rich Pt3(H2O)4+ cations, all four water molecules were directly bound to the Pt atoms; however, according to the DFT calculations, the fourth H2O molecule could bind to a first-layer water molecule through hydrogen bonding.


2021 ◽  
pp. 1-12
Author(s):  
Halimeh Rajabzadeh ◽  
Ayla Sharafat ◽  
Maryam Abbasi ◽  
Maryam Eslami Gharaati ◽  
Iraj Alipourfard

Favipiravir (Fav) has become a well-known drug for medication of patients by appearance of COVID-19. Heterocyclic structure and connected peptide group could make changes for Fav yielding different features from those required features. Therefore, it is indeed a challenging task to prepare a Fav compound with specific features of desired function. In this work, existence of eight Fav structures by tautomeric formations and peptide group rotations were obtained using density functional theory (DFT) optimization calculations. Gas phase, octanol solution, and water solution were employed to show impact of solution on features of Fav besides obtaining partition coefficients (LogP) for Fav compounds. Significant impacts of solutions were seen on features of Fav with the obtained LogP order: Fav-7 >  Fav-8 >  Fav-4 >  Fav-3 >  Fav-2 >  Fav-5 >  Fav-1 >  Fav-6. As a consequence, internal changes yielded significant impacts on features of Fav affirming its carful medication of COVID-19 patients.


1999 ◽  
Vol 595 ◽  
Author(s):  
W. R. Wampler ◽  
J. C. Barbour ◽  
C. H. Seager ◽  
S. M. Myers ◽  
A. F. Wright ◽  
...  

AbstractWe have used ion channeling to examine the lattice configuration of deuterium in Mg doped GaN grown by MOCVD. The deuterium is introduced by exposure to gas phase or ECR plasmas. A density functional approach including lattice relaxation, was used to calculate total energies for various locations and charge states of hydrogen in the wurtzite Mg doped GaN lattice. Results of channeling measurements are compared with channeling simulations for hydrogen at lattice locations predicted by density functional theory.


2020 ◽  
Author(s):  
Hugo Souza ◽  
Antonio Chaves Neto ◽  
Francisco Sousa ◽  
Rodrigo Amorim ◽  
Alexandre Reily Rocha ◽  
...  

In this work, we investigate the effects of building block separation of Phenylalanine-Tryptophan nanotube induced by the confined water molecules on the electronic properties using density-functional theory based tight-binding method. <div><br></div>


Sign in / Sign up

Export Citation Format

Share Document