mg doped
Recently Published Documents


TOTAL DOCUMENTS

1852
(FIVE YEARS 312)

H-INDEX

71
(FIVE YEARS 11)

2022 ◽  
Vol 146 ◽  
pp. 107566
Author(s):  
Hafiz Muhammad Asif Javed ◽  
Muhammad Adnan ◽  
Akbar Ali Qureshi ◽  
Sofia Javed ◽  
Muhammad Adeel ◽  
...  

Materials ◽  
2022 ◽  
Vol 15 (1) ◽  
pp. 318
Author(s):  
Saeid Kargozar ◽  
Peiman Brouki Milan ◽  
Moein Amoupour ◽  
Farzad Kermani ◽  
Sara Gorgani ◽  
...  

The use of bioactive glasses (BGs) has been quite fruitful in hard tissue engineering due to the capability of these materials to bond to living bone. In this work, a melt-derived magnesium (Mg)-doped BG (composition: 45SiO2–3P2O5–26CaO–15Na2O–7MgO–4K2O (mol.%)) was synthesized for being used in bone reconstruction. The prepared BGs were then manufactured as three-dimensional (3D) scaffolds by using the sponge replica approach. The microstructure of the samples was assessed by X-ray diffraction (XRD) and the surface morphology was observed by using scanning electron microscopy (SEM). The in vitro bioactivity and the release of osteo-stimulatory Mg2+ ions from the prepared samples were investigated over 7 days of incubation in simulated body fluids (SBF). In vitro cellular analyses revealed the compatibility of the Mg-doped BGs with human osteosarcoma cells (MG-63 cell line). Moreover, the Mg-doped BGs could induce bone nodule formation in vitro and improve the migratory ability of human umbilical vein endothelial cells (HUVECs). In vivo osteogenic capacity was further evaluated by implanting the BG-derived scaffolds into surgically-created critical-size bone defects in rats. Histological and immunohistological observations revealed an appropriate bone regeneration in the animals receiving the glass-based scaffolds after 12 weeks of surgery. In conclusion, our study indicates the effectiveness of the Mg-doped BGs in stimulating osteogenesis in both in vitro and in vivo conditions.


2022 ◽  
Vol 123 ◽  
pp. 111865
Author(s):  
Li Li ◽  
Yingtian Xu ◽  
Hanfei Hu ◽  
Yuanyuan Jing ◽  
Chongyang Xu ◽  
...  

Membranes ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 25
Author(s):  
Chyuan-Haur Kao ◽  
Kuan-Lin Chen ◽  
Jun-Ru Chen ◽  
Shih-Ming Chen ◽  
Yaw-Wen Kuo ◽  
...  

In this research, electrolyte-insulator-semiconductor (EIS) capacitors with Sb2O3 sensing membranes were fabricated. The results indicate that Mg doping and Ti-doped Sb2O3 membranes with appropriate annealing had improved material quality and sensing performance. Multiple material characterizations and sensing measurements of Mg-doped and Ti doping on Sb2O3 sensing membranes were conducted, including of X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). These detailed studies indicate that silicate and defects in the membrane could be suppressed by doping and annealing. Moreover, compactness enhancement, crystallization and grainization, which reinforced the surface sites on the membrane and boosted the sensing factor, could be achieved by doping and annealing. Among all of the samples, Mg doped membrane with annealing at 400 °C had the most preferable material properties and sensing behaviors. Mg-doped Sb2O3-based with appropriate annealing are promising for future industrial ionsensing devices and for possible integration with Sb2O3-based semiconductor devices.


Membranes ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 994
Author(s):  
Chyuan-Haur Kao ◽  
Chia-Shao Liu ◽  
Shih-Ming Chan ◽  
Chih-Chen Kuo ◽  
Shang-Che Tsai ◽  
...  

In this study, the effects of magnesium (Mg) doping and Ammonia (NH3) plasma on the pH sensing capabilities of InGaZnO membranes were investigated. Undoped InGaZnO and Mg-doped pH sensing membranes with NH3 plasma were examined with multiple material analyses including X-ray diffraction, X-ray photoelectron spectroscopy, secondary ion mass spectroscopy and transmission electron microscope, and pH sensing behaviors of the membrane in electrolyte-insulator-semiconductors. Results indicate that Mg doping and NH3 plasma treatment could superpositionally enhance crystallization in fine nanostructures, and strengthen chemical bindings. Results indicate these material improvements increased pH sensing capability significantly. Plasma-treated Mg-doped InGaZnO pH sensing membranes show promise for future pH sensing biosensors.


Author(s):  
Huan Xi ◽  
Xiaojuan Zhang ◽  
Ai Hua Zhang ◽  
Feng Guo ◽  
Yan Yang ◽  
...  
Keyword(s):  

2021 ◽  
Vol 2114 (1) ◽  
pp. 012004
Author(s):  
Duha S. Ahmed ◽  
Noor Q. Ali ◽  
Ali A. Taha

Abstract In this paper, we reported the synthesis of NiO NPs and Mg doped-NiO NPs using the facile sol-gel method. Besides, the influence of the variation of Mg dopant on the structural, morphological and optical properties of the prepared Mg-NiO NPs was studied. The synthesized Mg-NiO NPs nanoparticles were characterized by X-Ray Diffraction Analysis (XRD), Energy Dispersive X-ray Spectroscopy (EDS), Fourier-Transform Infrared Spectroscopy (FTIR), Field-Emission Scanning Electron Microscopy (FE-SEM), and UV-Vis spectrophotometer. The X-ray diffraction confirmed the formation of the cubic structure of Mg doped-NiO NPs after doping with the magnesium. The increase in the crystal size was observed with the increase in the concentration of the Mg dopant element. The FESEM images reveal the formation of nickel oxide through the appearance of spherical clusters, while the hybrids appear as wrinkled surface covered with spherical particles of magnesium. The UV-Vis spectrum showed a shift towards shorter wavelengths with an increase in the concentration of the Mg dopant element due to the quantum confinement effect. The hemolysis activity study showed that NiO NPs had a low hemolysis percentage of 1.47% and increased with increasing concentration. While, increasing of the RBC hemolysis (5.9%) after NiO doped with Mg. The antibacterial activity was studied against S. aureus and P. aeruginosa bacteria, and indicated the highest growth inhibition zones of Mg-doped NiO NPs as compared with NiO NPs against of Staphylococcus aureus and Pseudomonas aeruginosa, respectively.


Sign in / Sign up

Export Citation Format

Share Document