Sensitive Items in Privacy Preserving — Association Rule Mining

2008 ◽  
Vol 07 (01) ◽  
pp. 31-35
Author(s):  
K. Duraiswamy ◽  
N. Maheswari

Privacy-preserving has recently been proposed in response to the concerns of preserving personal or sensible information derived from data-mining algorithms. For example, through data-mining, sensible information such as private information or patterns may be inferred from non-sensible information or unclassified data. As large repositories of data contain confidential rules that must be protected before published, association rule hiding becomes one of important privacy preserving data-mining problems. There have been two types of privacy concerning data-mining. Output privacy tries to hide the mining results by minimally altering the data. Input privacy tries to manipulate the data so that the mining result is not affected or minimally affected. For some applications certain sensitive predictive rules are hidden that contain given sensitive items. To identify the sensitive items an algorithm SENSITEM is proposed. The results of the work have been given.

Author(s):  
Anne Denton

Most data of practical relevance are structured in more complex ways than is assumed in traditional data mining algorithms, which are based on a single table. The concept of relations allows for discussing many data structures such as trees and graphs. Relational data have much generality and are of significant importance, as demonstrated by the ubiquity of relational database management systems. It is, therefore, not surprising that popular data mining techniques, such as association rule mining, have been generalized to relational data. An important aspect of the generalization process is the identification of challenges that are new to the generalized setting.


2014 ◽  
Vol 23 (05) ◽  
pp. 1450004 ◽  
Author(s):  
Ibrahim S. Alwatban ◽  
Ahmed Z. Emam

In recent years, a new research area known as privacy preserving data mining (PPDM) has emerged and captured the attention of many researchers interested in preventing the privacy violations that may occur during data mining. In this paper, we provide a review of studies on PPDM in the context of association rules (PPARM). This paper systematically defines the scope of this survey and determines the PPARM models. The problems of each model are formally described, and we discuss the relevant approaches, techniques and algorithms that have been proposed in the literature. A profile of each model and the accompanying algorithms are provided with a comparison of the PPARM models.


2013 ◽  
Vol 798-799 ◽  
pp. 541-544
Author(s):  
Gao Ming Yang ◽  
Jing Zhao Li ◽  
Shun Xiang Zhang

A number of privacy preserving techniques have been proposed recently in data mining. In this paper, we provide a review of the state-of-the-art methods for privacy preserving data mining. and discuss methods for randomization, secure multipart computation, and so on. We also make a classification for the privacy preserving data mining technologies, and analyze some works in this field, such as data distortion method for achieving privacy preserving association rule mining. Detailed evaluation criteria of privacy preserving algorithm were illustrated, which include algorithm performance, data utility, and privacy protection degree. Finally, the development of privacy preserving data mining for further directions is given.


2019 ◽  
Vol 8 (4) ◽  
pp. 11893-11899

Privacy-Preserving-Data-Mining (PPDM) is a novel study which goals to protect the secretive evidence also circumvent the revelation of the evidence through the records reproducing progression. This paper focused on the privacy preserving on vertical separated databases. The designed methodology for the subcontracted databases allows multiple data viewers besides vendors proficiently to their records securely without conceding the secrecy of the data. Privacy Preserving Association Rule-Mining (PPARM) is one method, which objects to pelt sensitivity of the association imperative. A new efficient approach lives the benefit since the strange optimizations algorithms for the delicate association rule hiding. It is required to get leak less information of the raw data. The evaluation of the efficient of the proposed method can be conducting on some experiments on different databases. Based on the above optimization algorithm, the modified algorithm is to optimize the association rules on vertically and horizontally separated database and studied their performance


Author(s):  
Anne Denton ◽  
Christopher Besemann

Most data of practical relevance are structured in more complex ways than is assumed in traditional data mining algorithms, which are based on a single table. The concept of relations allows for discussing many data structures such as trees and graphs. Relational data have much generality and are of significant importance, as demonstrated by the ubiquity of relational database management systems. It is, therefore, not surprising that popular data mining techniques, such as association rule mining, have been generalized to relational data. An important aspect of the generalization process is the identification of problems that are new to the generalized setting.


2014 ◽  
Vol 571-572 ◽  
pp. 57-62
Author(s):  
Si Hui Shu ◽  
Zi Zhi Lin

Association rule mining is one of the most important and well researched techniques of data mining, the key procedure of the association rule mining is to find frequent itemsets , the frequent itemsets are easily obtained by maximum frequent itemsets. so finding maximum frequent itemsets is one of the most important strategies of association data mining. Algorithms of mining maximum frequent itemsets based on compression matrix are introduced in this paper. It mainly obtains all maximum frequent itemsets by simply removing a set of rows and columns of transaction matrix, which is easily programmed recursive algorithm. The new algorithm optimizes the known association rule mining algorithms based on matrix given by some researchers in recent years, which greatly reduces the temporal complexity and spatial complexity, and highly promotes the efficiency of association rule mining.


2013 ◽  
Vol 756-759 ◽  
pp. 1661-1664 ◽  
Author(s):  
Xiao Ming Zhu

Privacy preserving in data mining is a significant direction. There has been growing interests in private concerns for future data mining research. Privacy preserving data mining concentrates on developing accurate models without sharing precise individual data records. A privacy preserving association rule mining algorithm was introduced. This algorithm preserved privacy of individual values by computing scalar product. Then, the data mining and secure multiparty computation are briefly introduced. And proposes an implementation for privacy preserving mining protocol based secure multiparty computation protocol.


Author(s):  
Jun Zhang ◽  
Jie Wang ◽  
Shuting Xu

Data mining technologies have now been used in commercial, industrial, and governmental businesses, for various purposes, ranging from increasing profitability to enhancing national security. The widespread applications of data mining technologies have raised concerns about trade secrecy of corporations and privacy of innocent people contained in the datasets collected and used for the data mining purpose. It is necessary that data mining technologies designed for knowledge discovery across corporations and for security purpose towards general population have sufficient privacy awareness to protect the corporate trade secrecy and individual private information. Unfortunately, most standard data mining algorithms are not very efficient in terms of privacy protection, as they were originally developed mainly for commercial applications, in which different organizations collect and own their private databases, and mine their private databases for specific commercial purposes. In the cases of inter-corporation and security data mining applications, data mining algorithms may be applied to datasets containing sensitive or private information. Data warehouse owners and government agencies may potentially have access to many databases collected from different sources and may extract any information from these databases. This potentially unlimited access to data and information raises the fear of possible abuse and promotes the call for privacy protection and due process of law. Privacy-preserving data mining techniques have been developed to address these concerns (Fung et al., 2007; Zhang, & Zhang, 2007). The general goal of the privacy-preserving data mining techniques is defined as to hide sensitive individual data values from the outside world or from unauthorized persons, and simultaneously preserve the underlying data patterns and semantics so that a valid and efficient decision model based on the distorted data can be constructed. In the best scenarios, this new decision model should be equivalent to or even better than the model using the original data from the viewpoint of decision accuracy. There are currently at least two broad classes of approaches to achieving this goal. The first class of approaches attempts to distort the original data values so that the data miners (analysts) have no means (or greatly reduced ability) to derive the original values of the data. The second is to modify the data mining algorithms so that they allow data mining operations on distributed datasets without knowing the exact values of the data or without direct accessing the original datasets. This article only discusses the first class of approaches. Interested readers may consult (Clifton et al., 2003) and the references therein for discussions on distributed data mining approaches.


A Data mining is the method of extracting useful information from various repositories such as Relational Database, Transaction database, spatial database, Temporal and Time-series database, Data Warehouses, World Wide Web. Various functionalities of Data mining include Characterization and Discrimination, Classification and prediction, Association Rule Mining, Cluster analysis, Evolutionary analysis. Association Rule mining is one of the most important techniques of Data Mining, that aims at extracting interesting relationships within the data. In this paper we study various Association Rule mining algorithms, also compare them by using synthetic data sets, and we provide the results obtained from the experimental analysis


2018 ◽  
Vol 7 (4.36) ◽  
pp. 533
Author(s):  
P. Asha ◽  
T. Prem Jacob ◽  
A. Pravin

Currently, data gathering techniques have increased through which unstructured data creeps in, along with well defined data formats. Mining these data and bringing out useful patterns seems difficult. Various data mining algorithms were put forth for this purpose. The associated patterns generated by the association rule mining algorithms are large in number. Every ARM focuses on positive rule mining and very few literature has focussed on rare_itemsets_mining. The work aims at retrieving the rare itemsets that are of most interest to the user by utilizing various interestingness measures. Both positive and negative itemset mining would be focused in this work.  


Sign in / Sign up

Export Citation Format

Share Document