Heuristics for Single Machine Scheduling Problem with Release Dates, Deteriorating Effect and Skilled Workforce with Learning Ability

2014 ◽  
Vol 13 (02) ◽  
pp. 73-88 ◽  
Author(s):  
Antonio Costa ◽  
Fulvio Antonio Cappadonna ◽  
Sergio Fichera

In this paper, the single machine total weighted completion time scheduling problem is studied. The jobs have nonzero release time and processing time increases during the production due to the effect of deterioration on the machine. An operator sets up the machine and manually loads the job in the machine and unloads it at the end of the working time. The setup time and the removal time are influenced by the ability of the worker due to his work experience and learning capacity. Heuristic algorithms are proposed to solve the scheduling problem, and their efficiency is evaluated on a wide benchmark.

2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Myoung-Ju Park ◽  
Byung-Cheon Choi

We consider a single-machine scheduling problem with an outsourcing option in an environment where the processing time and outsourcing cost are uncertain. The performance measure is the total cost of processing some jobs in-house and outsourcing the rest. The cost of processing in-house jobs is measured as the total weighted completion time, which can be considered the operating cost. The uncertainty is described through either an interval or a discrete scenario. The objective is to minimize the maximum deviation from the optimal cost of each scenario. Since the deterministic version is known to be NP-hard, we focus on two special cases, one in which all jobs have identical weights and the other in which all jobs have identical processing times. We analyze the computational complexity of each case and present the conditions that make them polynomially solvable.


Mathematics ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 61
Author(s):  
Wencheng Wang ◽  
Xiaofei Liu

In this paper, we consider parallel-machine scheduling with release times and submodular penalties (P|rj,reject|Cmax+π(R)), in which each job can be accepted and processed on one of m identical parallel machines or rejected, but a penalty must paid if a job is rejected. Each job has a release time and a processing time, and the job can not be processed before its release time. The objective of P|rj,reject|Cmax+π(R) is to minimize the makespan of the accepted jobs plus the penalty of the rejected jobs, where the penalty is determined by a submodular function. This problem generalizes a multiprocessor scheduling problem with rejection, the parallel-machine scheduling with submodular penalties, and the single machine scheduling problem with release dates and submodular rejection penalties. In this paper, inspired by the primal-dual method, we present a combinatorial 2-approximation algorithm to P|rj,reject|Cmax+π(R). This ratio coincides with the best known ratio for the parallel-machine scheduling with submodular penalties and the single machine scheduling problem with release dates and submodular rejection penalties.


2016 ◽  
Vol 33 (05) ◽  
pp. 1650034 ◽  
Author(s):  
Zhenyou Wang ◽  
Cai-Min Wei ◽  
Yu-Bin Wu

This paper deals with the single machine scheduling problem with deteriorating jobs in which there are two distinct families of jobs (i.e., two-agent) pursuing different objectives. In this model the processing time of a job is defined as a function that is proportional to a linear function of its stating time. For the following three scheduling criteria: minimizing the makespan, minimizing the total weighted completion time, and minimizing the maximum lateness, we show that some basic versions of the problem are polynomially solvable. We also establish the conditions under which the problem is computationally hard.


Sign in / Sign up

Export Citation Format

Share Document