Content-based image retrieval using local texture features in distributed environment

Author(s):  
U. S. N. Raju ◽  
K. Suresh Kumar ◽  
Pulkesh Haran ◽  
Ramya Sree Boppana ◽  
Niraj Kumar

In this paper, we propose novel content-based image retrieval (CBIR) algorithms using Local Octa Patterns (LOtP), Local Hexadeca Patterns (LHdP) and Direction Encoded Local Binary Pattern (DELBP). LOtP and LHdP encode the relationship between center pixel and its neighbors based on the pixels’ direction obtained by considering the horizontal, vertical and diagonal pixels for derivative calculations. In DELBP, direction of a referenced pixel is determined by considering every neighboring pixel for derivative calculations which results in 256 directions. For this resultant direction encoded image, we have obtained LBP which is considered as feature vector. The proposed method’s performance is compared to that of Local Tetra Patterns (LTrP) using benchmark image databases viz., Corel 1000 (DB1) and Brodatz textures (DB2). Performance analysis shows that LOtP improves the average precision from 59.31% to 64.36% on DB1, and from 83.24% to 85.95% on DB2, LHdP improves it to 65.82% on DB1 and to 87.49% on DB2 and DELBP improves it to 60.35% on DB1 and to 86.12% on DB2 as compared to that of LTrP. Also, DELBP reduces the feature vector length by 66.62% as compared to that of LTrP. To reduce the retrieval time, the proposed algorithms are implemented on a Hadoop cluster consisting of 116 nodes and tested using Corel 10K (DB3), Mirflickr 100,000 (DB4) and ImageNet 511,380 (DB5) databases.

Author(s):  
Mohamed Hamroun ◽  
Karim Tamine ◽  
Frederic Claux ◽  
Mourad Zribi

Content-based image retrieval (CBIR) is a technique for images retrieval based on their visual features, i.e. induced by their pixels. The images are, classically, described by the image feature vectors. Those vectors reflect the texture, color or a combination of them. The accuracy of the CBIR system is highly influenced by the (i) definition of the image feature vector describing the image, (ii) indexing and (iii) retrieval process. In this paper, we propose a new CBIR system entitled ISE (Image Search Engine). Our ISE system defines the optimum combination of color and texture features as an image feature vector, including the Particle Swarm Optimization (PSO) algorithm and employing an Interactive Genetic Approach (GA) for the indexing process. The performance analysis shows that our suggested PCM (Proposed Combination Method) upgrades the average precision metric from 66.6% to 89.30% for the “Food” category color histogram, from 77.7% to 100% concerning CCVs (Color Coherence Vectors) for the “Flower” category and from 58% to 87.65% regarding the DCD (Dominant Color Descriptor) for the “Building” category using the Corel dataset. Besides, our ISE system showcases an average precision of 98.23%, which is significantly higher than other CBIR systems presented in related works.


2011 ◽  
Vol 61 (5) ◽  
pp. 415 ◽  
Author(s):  
Madasu Hanmandlu ◽  
Anirban Das

<p>Content-based image retrieval focuses on intuitive and efficient methods for retrieving images from databases based on the content of the images. A new entropy function that serves as a measure of information content in an image termed as 'an information theoretic measure' is devised in this paper. Among the various query paradigms, 'query by example' (QBE) is adopted to set a query image for retrieval from a large image database. In this paper, colour and texture features are extracted using the new entropy function and the dominant colour is considered as a visual feature for a particular set of images. Thus colour and texture features constitute the two-dimensional feature vector for indexing the images. The low dimensionality of the feature vector speeds up the atomic query. Indices in a large database system help retrieve the images relevant to the query image without looking at every image in the database. The entropy values of colour and texture and the dominant colour are considered for measuring the similarity. The utility of the proposed image retrieval system based on the information theoretic measures is demonstrated on a benchmark dataset.</p><p><strong>Defence Science Journal, 2011, 61(5), pp.415-430</strong><strong><strong>, DOI:http://dx.doi.org/10.14429/dsj.61.1177</strong></strong></p>


Author(s):  
Nickolas Cornelius Siantar ◽  
Jaqnson Hendryli ◽  
Dyah Erny Herwindiati

Phone or smartphone and online shop, there is something that cannot be separated with human. There are so many type of smartphones show up in the market that people are confused on which one to get on the online stores. Smartphones recognition is done by using the Histogram of Oriented Gradient to recognize shapes of phones, Color Quantization to recognize the color, and Local Binary Pattern to recognize texture of the phones. The output of the Feature Extractor is a feature vector which is used on the LVQ to process recognize through finding the smallest Euclidean Distance between the trained vectors. The result of this paper is an application that can recognize 16 phone types using the image with the accuracy of 9.6%. Pada saat ini, ponsel dan toko online merupakan sesuatu yang tidak dapat dipisahkan dari manusia. Begitu banyak jenis ponsel bermunculan setiap tahunnya sehingga menyebabkan manusia bingung dalam mengenali ponsel tersebut. Pada program pengenalan ponsel ini digunakan Histogram of Oriented Gradient untuk mengambil fitur berupa bentuk ponsel, Color Quantization untuk mengambil fitur warna, dan Local Binary Pattern untuk mengambil fitur tekstur ponsel. Hasil dari pengambilan fitur berupa fitur vektor yang digunakan pada Learning Vector Quantization untuk proses pengenalan dengan mencari nilai terkecil Euclidean Distance antara vektor fitur dengan vektor bobot terlatih. Hasil dari program pengenalan ini yaitu program dapat melakukan pengenalan terhadap 16 jenis ponsel dengan akurasi sebesar 9.6%.


In these years, there has been a gigantic growth in the generation of data. Innovations such as the Internet, social media and smart phones are the facilitators of this information boom. Since ancient times images were treated as an effective mode of communication. Even today most of the data generated is image data. The technology for capturing, storing and transferring images is well developed but efficient image retrieval is still a primitive area of research. Content Based Image Retrieval (CBIR) is one such area where lot of research is still going on. CBIR systems rely on three aspects of the image content namely texture, shape and color. Application specific CBIR systems are effective whereas Generic CBIR systems are being explored. Previously, descriptors are used to extract shape, color or texture content features, but the effect of using more than one descriptor is under research and may yield better results. The paper presents the fusion of TSBTC n-ary (Thepade's Sorted n-ary Block Truncation Coding) Global Color Features and Local Binary Pattern (LBP) Local Texture Features in Content Based Image with Different Color Places TSBTC n-ary devises global color features from an image. It is a faster and better technique compared to Block Truncation Coding. It is also rotation and scale invariant. When applied on an image TSBTC n-ary gives a feature vector based on the color space, if TSBTC n-ary is applied on the obtained LBP (Local Binary Patterns) of the image color planes, the feature vector obtained is be based on local texture content. Along with RGB, the Luminance chromaticity color space like YCbCr and Kekre’s LUV are also used in experimentation of proposed CBIR techniques. Wang dataset has been used for exploration of proposed method. It consists of 1000 images (10 categories having 100 images each). Obtained results have shown performance improvement using fusion of BTC extracted global color features and local texture features extracted with TSBTC n-ary applied on Local Binary Patterns (LBP).


2021 ◽  
Vol 8 (7) ◽  
pp. 97-105
Author(s):  
Ali Ahmed ◽  
◽  
Sara Mohamed ◽  

Content-Based Image Retrieval (CBIR) systems retrieve images from the image repository or database in which they are visually similar to the query image. CBIR plays an important role in various fields such as medical diagnosis, crime prevention, web-based searching, and architecture. CBIR consists mainly of two stages: The first is the extraction of features and the second is the matching of similarities. There are several ways to improve the efficiency and performance of CBIR, such as segmentation, relevance feedback, expansion of queries, and fusion-based methods. The literature has suggested several methods for combining and fusing various image descriptors. In general, fusion strategies are typically divided into two groups, namely early and late fusion strategies. Early fusion is the combination of image features from more than one descriptor into a single vector before the similarity computation, while late fusion refers either to the combination of outputs produced by various retrieval systems or to the combination of different rankings of similarity. In this study, a group of color and texture features is proposed to be used for both methods of fusion strategies. Firstly, an early combination of eighteen color features and twelve texture features are combined into a single vector representation and secondly, the late fusion of three of the most common distance measures are used in the late fusion stage. Our experimental results on two common image datasets show that our proposed method has good performance retrieval results compared to the traditional way of using single features descriptor and also has an acceptable retrieval performance compared to some of the state-of-the-art methods. The overall accuracy of our proposed method is 60.6% and 39.07% for Corel-1K and GHIM-10K ‎datasets, respectively.


Sign in / Sign up

Export Citation Format

Share Document