scholarly journals Image Retrieval with Fusion of Thepade’s Sorted Block Truncation Coding n-ary based Color and Local Binary Pattern based Texture Features with Different Color Places

In these years, there has been a gigantic growth in the generation of data. Innovations such as the Internet, social media and smart phones are the facilitators of this information boom. Since ancient times images were treated as an effective mode of communication. Even today most of the data generated is image data. The technology for capturing, storing and transferring images is well developed but efficient image retrieval is still a primitive area of research. Content Based Image Retrieval (CBIR) is one such area where lot of research is still going on. CBIR systems rely on three aspects of the image content namely texture, shape and color. Application specific CBIR systems are effective whereas Generic CBIR systems are being explored. Previously, descriptors are used to extract shape, color or texture content features, but the effect of using more than one descriptor is under research and may yield better results. The paper presents the fusion of TSBTC n-ary (Thepade's Sorted n-ary Block Truncation Coding) Global Color Features and Local Binary Pattern (LBP) Local Texture Features in Content Based Image with Different Color Places TSBTC n-ary devises global color features from an image. It is a faster and better technique compared to Block Truncation Coding. It is also rotation and scale invariant. When applied on an image TSBTC n-ary gives a feature vector based on the color space, if TSBTC n-ary is applied on the obtained LBP (Local Binary Patterns) of the image color planes, the feature vector obtained is be based on local texture content. Along with RGB, the Luminance chromaticity color space like YCbCr and Kekre’s LUV are also used in experimentation of proposed CBIR techniques. Wang dataset has been used for exploration of proposed method. It consists of 1000 images (10 categories having 100 images each). Obtained results have shown performance improvement using fusion of BTC extracted global color features and local texture features extracted with TSBTC n-ary applied on Local Binary Patterns (LBP).

Author(s):  
U. S. N. Raju ◽  
K. Suresh Kumar ◽  
Pulkesh Haran ◽  
Ramya Sree Boppana ◽  
Niraj Kumar

In this paper, we propose novel content-based image retrieval (CBIR) algorithms using Local Octa Patterns (LOtP), Local Hexadeca Patterns (LHdP) and Direction Encoded Local Binary Pattern (DELBP). LOtP and LHdP encode the relationship between center pixel and its neighbors based on the pixels’ direction obtained by considering the horizontal, vertical and diagonal pixels for derivative calculations. In DELBP, direction of a referenced pixel is determined by considering every neighboring pixel for derivative calculations which results in 256 directions. For this resultant direction encoded image, we have obtained LBP which is considered as feature vector. The proposed method’s performance is compared to that of Local Tetra Patterns (LTrP) using benchmark image databases viz., Corel 1000 (DB1) and Brodatz textures (DB2). Performance analysis shows that LOtP improves the average precision from 59.31% to 64.36% on DB1, and from 83.24% to 85.95% on DB2, LHdP improves it to 65.82% on DB1 and to 87.49% on DB2 and DELBP improves it to 60.35% on DB1 and to 86.12% on DB2 as compared to that of LTrP. Also, DELBP reduces the feature vector length by 66.62% as compared to that of LTrP. To reduce the retrieval time, the proposed algorithms are implemented on a Hadoop cluster consisting of 116 nodes and tested using Corel 10K (DB3), Mirflickr 100,000 (DB4) and ImageNet 511,380 (DB5) databases.


2014 ◽  
Vol 14 (1) ◽  
pp. 5329-5336 ◽  
Author(s):  
Vakulabharanam Vijaya Kumar ◽  
Vishnu Murthy. G ◽  
A. Obulesu

One of the recently invented theoretically simple and efficient operators that is playing a significant role in image processing, pattern recognition and other domains is the Local Binary Pattern (LBP). LBP measures the local texture features on a given neighbourhood efficiently. The Uniform LBP (ULBP) that is derived on LBP is treated as the fundamental unit of the textures. There 58 ULBPs out of 256 LBPs on a 3 x3 neighbourhood. Further the textures on average contain 75% to 90% of the patterns as ULBP only. One disadvantage is representing all 58 ULBS. To say whether a given LBP is uniform or not one should march the given LBP with 58 Patterns. Very few research scholars derived grammar to represent patterns that arises from 2-D images. The present paper addresses the above problem by generating a simple array grammar that represents all ULBP on a 3 x 3 neighbourhood or with 8 neighbours.The present paper tests the proposed Array Grammar model of ULBP (AG-ULBP) with various LBP patterns to prove its accuracy.


2019 ◽  
Vol 33 (19) ◽  
pp. 1950213 ◽  
Author(s):  
Vibhav Prakash Singh ◽  
Rajeev Srivastava ◽  
Yadunath Pathak ◽  
Shailendra Tiwari ◽  
Kuldeep Kaur

Content-based image retrieval (CBIR) system generally retrieves images based on the matching of the query image from all the images of the database. This exhaustive matching and searching slow down the image retrieval process. In this paper, a fast and effective CBIR system is proposed which uses supervised learning-based image management and retrieval techniques. It utilizes machine learning approaches as a prior step for speeding up image retrieval in the large database. For the implementation of this, first, we extract statistical moments and the orthogonal-combination of local binary patterns (OC-LBP)-based computationally light weighted color and texture features. Further, using some ground truth annotation of images, we have trained the multi-class support vector machine (SVM) classifier. This classifier works as a manager and categorizes the remaining images into different libraries. However, at the query time, the same features are extracted and fed to the SVM classifier. SVM detects the class of query and searching is narrowed down to the corresponding library. This supervised model with weighted Euclidean Distance (ED) filters out maximum irrelevant images and speeds up the searching time. This work is evaluated and compared with the conventional model of the CBIR system on two benchmark databases, and it is found that the proposed work is significantly encouraging in terms of retrieval accuracy and response time for the same set of used features.


2019 ◽  
Vol 79 (47-48) ◽  
pp. 34875-34911 ◽  
Author(s):  
Suresh Kumar Kanaparthi ◽  
U. S. N. Raju ◽  
P. Shanmukhi ◽  
G. Khyathi Aneesha ◽  
Mohammed Ehsan Ur Rahman

2013 ◽  
Vol 846-847 ◽  
pp. 1266-1269
Author(s):  
Meng Zhao ◽  
Zhan Ping Li

Segmentation of motion in an image sequence is one of the most challenging problems in image processing. In image analysis engineering, accurate statistics of sport image is one of the most important subjects, while at the same time one that finds numerous applications. In this paper, we propose a robust multi-layer background subtraction technique which takes advantages of local texture features represented by local binary patterns (LBP) and photometric invariant color measurements in RGB color space. Due to the use of a simple layer-based strategy, the approach can model moving background pixels with quasiperiodic flickering as well as background scenes which may vary over time due to the addition and removal of long-time stationary objects, which plays an important role in optimizing the growth conditions of sport image. Segmentation of sport images is successfully realized by means of multi-layer background subtraction method and then the sport image is computed precisely.


Author(s):  
Priyesh Tiwari ◽  
Shivendra Nath Sharan ◽  
Kulwant Singh ◽  
Suraj Kamya

Content based image retrieval (CBIR), is an application of real-world computer vision domain where from a query image, similar images are searched from the database. The research presented in this paper aims to find out best features and classification model for optimum results for CBIR system.Five different set of feature combinations in two different color domains (i.e., RGB & HSV) are compared and evaluated using Neural Network Classifier, where best results obtained are 88.2% in terms of classifier accuracy. Color moments feature used comprises of: Mean, Standard Deviation,Kurtosis and Skewness. Histogram features is calculated via 10 probability bins. Wang-1k dataset is used to evaluate the CBIR system performance for image retrieval.Research concludes that integrated multi-level 3D color-texture feature yields most accurate results and also performs better in comparison to individually computed color and texture features.


2021 ◽  
Vol 5 (1) ◽  
pp. 28
Author(s):  
Fawzi Abdul Azeez Salih ◽  
Alan Anwer Abdulla

The rapid advancement and exponential evolution in the multimedia applications raised the attentional research on content-based image retrieval (CBIR). The technique has a significant role for searching and finding similar images to the query image through extracting the visual features. In this paper, an approach of two layers of search has been developed which is known as two-layer based CBIR. The first layer is concerned with comparing the query image to all images in the dataset depending on extracting the local feature using bag of features (BoF) mechanism which leads to retrieve certain most similar images to the query image. In other words, first step aims to eliminate the most dissimilar images to the query image to reduce the range of search in the dataset of images. In the second layer, the query image is compared to the images obtained in the first layer based on extracting the (texture and color)-based features. The Discrete Wavelet Transform (DWT) and Local Binary Pattern (LBP) were used as texture features. However, for the color features, three different color spaces were used, namely RGB, HSV, and YCbCr. The color spaces are utilized by calculating the mean and entropy for each channel separately. Corel-1K was used for evaluating the proposed approach. The experimental results prove the superior performance of the proposed concept of two-layer over the current state-of-the-art techniques in terms of precision rate in which achieved 82.15% and 77.27% for the top-10 and top-20, respectively.


Sign in / Sign up

Export Citation Format

Share Document