scholarly journals AN EFFICIENT QUANTUM ALGORITHM FOR COLORED JONES POLYNOMIALS

2008 ◽  
Vol 06 (supp01) ◽  
pp. 773-778 ◽  
Author(s):  
MARIO RASETTI ◽  
SILVANO GARNERONE ◽  
ANNALISA MARZUOLI

We construct a quantum algorithm to approximate efficiently the colored Jones polynomial of the plat presentation of any oriented link L at a fixed root of unity q. The construction exploits the q-deformed spin network as computational background. The complexity of such algorithm is bounded above linearly by the number of crossings of the link, and polynomially by the number of link strands.

2016 ◽  
Vol 100 (3) ◽  
pp. 303-337 ◽  
Author(s):  
JINSEOK CHO

The optimistic limit is a mathematical formulation of the classical limit, which is a physical method to estimate the actual limit by using the saddle-point method of a certain potential function. The original optimistic limit of the Kashaev invariant was formulated by Yokota, and a modified formulation was suggested by the author and others. This modified version is easier to handle and more combinatorial than the original one. On the other hand, it is known that the Kashaev invariant coincides with the evaluation of the colored Jones polynomial at a certain root of unity. This optimistic limit of the colored Jones polynomial was also formulated by the author and others, but it is very complicated and needs many unnatural assumptions. In this article, we suggest a modified optimistic limit of the colored Jones polynomial, following the idea of the modified optimistic limit of the Kashaev invariant, and show that it determines the complex volume of a hyperbolic link. Furthermore, we show that this optimistic limit coincides with the optimistic limit of the Kashaev invariant modulo $4{\it\pi}^{2}$. This new version is easier to handle and more combinatorial than the old version, and has many advantages over the modified optimistic limit of the Kashaev invariant. Because of these advantages, several applications have already appeared and more are in preparation.


2008 ◽  
Vol 17 (08) ◽  
pp. 925-937
Author(s):  
TOSHIFUMI TANAKA

We give formulas for the N-colored Jones polynomials of doubles of knots by using skein theory. As a corollary, we show that if the volume conjecture for untwisted positive (or negative) doubles of knots is true, then the colored Jones polynomial detects the unknot.


2007 ◽  
Vol 16 (03) ◽  
pp. 267-332 ◽  
Author(s):  
LOUIS H. KAUFFMAN ◽  
SAMUEL J. LOMONACO

We review the q-deformed spin network approach to Topological Quantum Field Theory and apply these methods to produce unitary representations of the braid groups that are dense in the unitary groups. Our methods are rooted in the bracket state sum model for the Jones polynomial. We give our results for a large class of representations based on values for the bracket polynomial that are roots of unity. We make a separate and self-contained study of the quantum universal Fibonacci model in this framework. We apply our results to give quantum algorithms for the computation of the colored Jones polynomials for knots and links, and the Witten–Reshetikhin–Turaev invariant of three manifolds.


2010 ◽  
Vol 19 (11) ◽  
pp. 1401-1421 ◽  
Author(s):  
JINSEOK CHO ◽  
JUN MURAKAMI

For a hyperbolic knot, an ideal triangulation of the knot complement corresponding to the colored Jones polynomial was introduced by Thurston. Considering this triangulation of a twist knot, we find a function which gives the hyperbolicity equations and the complex volume of the knot complement, using Zickert's theory of the extended Bloch group and the complex volume. We also consider a formal approximation of the colored Jones polynomial. Following Ohnuki's theory of 2-bridge knots, we define another function which comes from the approximation. We show that this function is essentially the same as the previous function, and therefore it also gives the same hyperbolicity equations and the complex volume. Finally we compare this result with our previous one which dealt with Yokota theory, and, as an application to Yokota theory, present a refined formula of the complex volumes for any twist knots.


Author(s):  
Jeremy Lovejoy ◽  
Robert Osburn

Using a result of Takata, we prove a formula for the colored Jones polynomial of the double twist knots [Formula: see text] and [Formula: see text] where [Formula: see text] and [Formula: see text] are positive integers. In the [Formula: see text] case, this leads to new families of [Formula: see text]-hypergeometric series generalizing the Kontsevich–Zagier series. Comparing with the cyclotomic expansion of the colored Jones polynomials of [Formula: see text] gives a generalization of a duality at roots of unity between the Kontsevich–Zagier function and the generating function for strongly unimodal sequences.


2005 ◽  
Vol 14 (06) ◽  
pp. 751-771 ◽  
Author(s):  
KOJI OHNUKI

In this paper, we discuss the relation between the colored Jones polynomial of a 2-bridge link and the ideal triangulation of it's complement in S3. The aim of this paper is to describe the ideal triangulation of a 2-bridge link complement and to show that the hyperbolicity equations coincide with the equations obtained from the colored Jones polynomial of a 2-bridge link, and to compare this triangulation with the canonical decomposition of the 2-bridge link complement introduced by Sakuma and Weeks in [10].


2010 ◽  
Vol 19 (12) ◽  
pp. 1571-1595 ◽  
Author(s):  
STAVROS GAROUFALIDIS ◽  
XINYU SUN

The purpose of the paper is two-fold: to introduce a multivariable creative telescoping method, and to apply it in a problem of Quantum Topology: namely the computation of the non-commutative A-polynomial of twist knots. Our multivariable creative telescoping method allows us to compute linear recursions for sums of the form [Formula: see text] given a recursion relation for [Formula: see text] and the hypergeometric kernel c(n, k). As an application of our method, we explicitly compute the non-commutative A-polynomial for twist knots with -15 and 15 crossings. The non-commutative A-polynomial of a knot encodes the monic, linear, minimal order q-difference equation satisfied by the sequence of colored Jones polynomials of the knot. Its specialization to q = 1 is conjectured to be the better-known A-polynomial of a knot, which encodes important information about the geometry and topology of the knot complement. Unlike the case of the Jones polynomial, which is easily computable for knots with 50 crossings, the A-polynomial is harder to compute and already unknown for some knots with 12 crossings.


2017 ◽  
Vol 26 (05) ◽  
pp. 1750029 ◽  
Author(s):  
Ryo Nikkuni

The Jones polynomial [Formula: see text] for an oriented link [Formula: see text] is a one-variable Laurent polynomial link invariant discovered by Jones. For any integer [Formula: see text], we show that: (1) the difference of Jones polynomials for two oriented links which are [Formula: see text]-equivalent is divisible by [Formula: see text], and (2) there exists a pair of two oriented knots which are [Formula: see text]-equivalent such that the difference of the Jones polynomials for them equals [Formula: see text].


2008 ◽  
Vol 10 (supp01) ◽  
pp. 815-834 ◽  
Author(s):  
KAZUHIRO HIKAMI ◽  
HITOSHI MURAKAMI

The volume conjecture and its generalizations say that the colored Jones polynomial corresponding to the N-dimensional irreducible representation of sl(2;ℂ) of a (hyperbolic) knot evaluated at exp(c/N) grows exponentially with respect to N if one fixes a complex number c near [Formula: see text]. On the other hand if the absolute value of c is small enough, it converges to the inverse of the Alexander polynomial evaluated at exp c. In this paper we study cases where it grows polynomially.


2008 ◽  
Vol 8 (5) ◽  
pp. 489-500
Author(s):  
Y. Nakajima ◽  
Y. Kawano ◽  
H. Sekigawa

Freedman, Kitaev, and Wang proved the equivalence between quantum field theory and quantum computation, and consequently showed that the problem of approximating the Jones polynomial (a knot invariant) at the fifth root of unity is BQP-complete. Recently, Aharonov, Jones, and Landau proposed a concrete quantum algorithm, called the AJL algorithm, that approximates the Jones polynomial at the $k$th root of unity in polynomial time. In this paper, we propose a new method for implementing the AJL algorithm, which improves the performance from $O(mn\log^2k)$ to $O(mn)$. Here, $n$ is the number of strands, $m$ is the number of the crossings in a braid. Since, in the AJL algorithm, $m$ and $k$ are assumed to be given as polynomials in $n$, the difference in the performance between the original implementation and our design is significant if $k$ is a large-degree polynomial.


Sign in / Sign up

Export Citation Format

Share Document