scholarly journals Cn-moves and the difference of Jones polynomials for links

2017 ◽  
Vol 26 (05) ◽  
pp. 1750029 ◽  
Author(s):  
Ryo Nikkuni

The Jones polynomial [Formula: see text] for an oriented link [Formula: see text] is a one-variable Laurent polynomial link invariant discovered by Jones. For any integer [Formula: see text], we show that: (1) the difference of Jones polynomials for two oriented links which are [Formula: see text]-equivalent is divisible by [Formula: see text], and (2) there exists a pair of two oriented knots which are [Formula: see text]-equivalent such that the difference of the Jones polynomials for them equals [Formula: see text].

2016 ◽  
Vol 25 (02) ◽  
pp. 1650011
Author(s):  
Adrián Jiménez Pascual

In this paper, I present a new family of knots in the solid torus called lassos, and their properties. Given a knot [Formula: see text] with Alexander polynomial [Formula: see text], I then use these lassos as patterns to construct families of satellite knots that have Alexander polynomial [Formula: see text] where [Formula: see text]. In particular, I prove that if [Formula: see text] these satellite knots have different Jones polynomials.


2017 ◽  
Vol 26 (11) ◽  
pp. 1750062
Author(s):  
Shinji Fukuhara ◽  
Yusuke Kuno

We introduce a Kauffman–Jones type polynomial [Formula: see text] for a curve [Formula: see text] on an oriented surface, whose endpoints are on the boundary of the surface. The polynomial [Formula: see text] is a Laurent polynomial in one variable [Formula: see text] and is an invariant of the homotopy class of [Formula: see text]. As an application, we obtain an estimate in terms of the span of [Formula: see text] for the minimum self-intersection number of a curve within its homotopy class. We then give a chord diagrammatic description of [Formula: see text] and show some computational results on the span of [Formula: see text].


2008 ◽  
Vol 06 (supp01) ◽  
pp. 773-778 ◽  
Author(s):  
MARIO RASETTI ◽  
SILVANO GARNERONE ◽  
ANNALISA MARZUOLI

We construct a quantum algorithm to approximate efficiently the colored Jones polynomial of the plat presentation of any oriented link L at a fixed root of unity q. The construction exploits the q-deformed spin network as computational background. The complexity of such algorithm is bounded above linearly by the number of crossings of the link, and polynomially by the number of link strands.


1991 ◽  
Vol 109 (1) ◽  
pp. 83-103 ◽  
Author(s):  
H. R. Morton ◽  
P. Strickland

AbstractResults of Kirillov and Reshetikhin on constructing invariants of framed links from the quantum group SU(2)q are adapted to give a simple formula relating the invariants for a satellite link to those of the companion and pattern links used in its construction. The special case of parallel links is treated first. It is shown as a consequence that any SU(2)q-invariant of a link L is a linear combination of Jones polynomials of parallels of L, where the combination is determined explicitly from the representation ring of SU(2). As a simple illustration Yamada's relation between the Jones polynomial of the 2-parallel of L and an evaluation of Kauffman's polynomial for sublinks of L is deduced.


2008 ◽  
Vol 17 (08) ◽  
pp. 925-937
Author(s):  
TOSHIFUMI TANAKA

We give formulas for the N-colored Jones polynomials of doubles of knots by using skein theory. As a corollary, we show that if the volume conjecture for untwisted positive (or negative) doubles of knots is true, then the colored Jones polynomial detects the unknot.


2006 ◽  
Vol 15 (10) ◽  
pp. 1279-1301
Author(s):  
N. AIZAWA ◽  
M. HARADA ◽  
M. KAWAGUCHI ◽  
E. OTSUKI

All polynomial invariants of links for two dimensional solutions of Yang–Baxter equation is constructed by employing Turaev's method. As a consequence, it is proved that the best invariant so constructed is the Jones polynomial and there exist three solutions connecting to the Alexander polynomial. Invariants for higher dimensional solutions, obtained by the so-called dressings, are also investigated. It is observed that the dressings do not improve link invariant unless some restrictions are put on dressed solutions.


2010 ◽  
Vol 19 (12) ◽  
pp. 1571-1595 ◽  
Author(s):  
STAVROS GAROUFALIDIS ◽  
XINYU SUN

The purpose of the paper is two-fold: to introduce a multivariable creative telescoping method, and to apply it in a problem of Quantum Topology: namely the computation of the non-commutative A-polynomial of twist knots. Our multivariable creative telescoping method allows us to compute linear recursions for sums of the form [Formula: see text] given a recursion relation for [Formula: see text] and the hypergeometric kernel c(n, k). As an application of our method, we explicitly compute the non-commutative A-polynomial for twist knots with -15 and 15 crossings. The non-commutative A-polynomial of a knot encodes the monic, linear, minimal order q-difference equation satisfied by the sequence of colored Jones polynomials of the knot. Its specialization to q = 1 is conjectured to be the better-known A-polynomial of a knot, which encodes important information about the geometry and topology of the knot complement. Unlike the case of the Jones polynomial, which is easily computable for knots with 50 crossings, the A-polynomial is harder to compute and already unknown for some knots with 12 crossings.


2010 ◽  
Vol 19 (08) ◽  
pp. 1001-1023 ◽  
Author(s):  
XIAN'AN JIN ◽  
FUJI ZHANG

It is well known that Jones polynomial (hence, Kauffman bracket polynomial) of links is, in general, hard to compute. By now, Jones polynomials or Kauffman bracket polynomials of many link families have been computed, see [4, 7–11]. In recent years, the computer algebra (Maple) techniques were used to calculate link polynomials for various link families, see [7, 12–14]. In this paper, we try to design a maple program to calculate the explicit expression of the Kauffman bracket polynomial of Montesinos links. We first introduce a family of "ring of tangles" links, which includes Montesinos links as a special subfamily. Then, we provide a closed-form formula of Kauffman bracket polynomial for a "ring of tangles" link in terms of Kauffman bracket polynomials of the numerators and denominators of the tangles building the link. Finally, using this formula and known results on rational links, the Maple program is designed.


2004 ◽  
Vol 15 (09) ◽  
pp. 959-965 ◽  
Author(s):  
KAZUHIRO HIKAMI

We prove that the N-colored Jones polynomial for the torus knot [Formula: see text] satisfies the second order difference equation, which reduces to the first order difference equation for a case of [Formula: see text]. We show that the A-polynomial of the torus knot can be derived from the difference equation. Also constructed is a q-hypergeometric type expression of the colored Jones polynomial for [Formula: see text].


2019 ◽  
Vol 28 (03) ◽  
pp. 1950004
Author(s):  
Mark E. Kidwell ◽  
Kerry M. Luse

We relate some terms on the boundary of the Newton polygon of the Alexander polynomial [Formula: see text] of a rational link to the number and length of monochromatic twist sites in a particular diagram that we call the standard form. Normalize [Formula: see text] to be a true polynomial (as opposed to a Laurent polynomial), in such a way that terms of even total degree have positive coefficients and terms of odd total degree have negative coefficients. If the rational link has a reduced alternating diagram with no self-crossings, then [Formula: see text]. If the standard form of the rational link has [Formula: see text] monochromatic twist sites, and the [Formula: see text]th monochromatic twist site has [Formula: see text] crossings, then [Formula: see text]. Our proof employs Kauffman’s clock moves and a lattice for the terms of [Formula: see text] in which the [Formula: see text]-power cannot decrease.


Sign in / Sign up

Export Citation Format

Share Document