scholarly journals A QUANTUM WALK WITH A DELOCALIZED INITIAL STATE: CONTRIBUTION FROM A COIN-FLIP OPERATOR

2013 ◽  
Vol 11 (05) ◽  
pp. 1350053 ◽  
Author(s):  
TAKUYA MACHIDA

A unit evolution step of discrete-time quantum walks (QWs) is determined by both a coin-flip operator and a position-shift operator. The behavior of quantum walkers after many steps delicately depends on the coin-flip operator and an initial condition of the walk. To get the behavior, a lot of long-time limit distributions for the QWs starting with a localized initial state have been derived. In this paper, we compute limit distributions of a 2-state QW with a delocalized initial state, not a localized initial state, and discuss how the walker depends on the coin-flip operator. The initial state induced from the Fourier series expansion, which is called the (α, β) delocalized initial state in this paper, provides different limit density functions from the ones of the quantum walk with a localized initial state.

Symmetry ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1134
Author(s):  
Kenta Higuchi ◽  
Takashi Komatsu ◽  
Norio Konno ◽  
Hisashi Morioka ◽  
Etsuo Segawa

We consider the discrete-time quantum walk whose local dynamics is denoted by a common unitary matrix C at the perturbed region {0,1,⋯,M−1} and free at the other positions. We obtain the stationary state with a bounded initial state. The initial state is set so that the perturbed region receives the inflow ωn at time n(|ω|=1). From this expression, we compute the scattering on the surface of −1 and M and also compute the quantity how quantum walker accumulates in the perturbed region; namely, the energy of the quantum walk, in the long time limit. The frequency of the initial state of the influence to the energy is symmetric on the unit circle in the complex plain. We find a discontinuity of the energy with respect to the frequency of the inflow.


2018 ◽  
Vol 16 (03) ◽  
pp. 1850023
Author(s):  
Takuya Machida

Discrete-time quantum walks are considered a counterpart of random walks and their study has been getting attention since around 2000. In this paper, we focus on a quantum walk which generates a probability distribution splitting to two parts. The quantum walker with two coin states spreads at points, represented by integers, and we analyze the chance of finding the walker at each position after it carries out a unitary evolution a lot of times. The result is reported as a long-time limit distribution from which one can see an approximation to the finding probability.


2011 ◽  
Vol 11 (9&10) ◽  
pp. 855-866
Author(s):  
Yusuke Ide ◽  
Norio Konno ◽  
Takuya Machida

The discrete-time quantum walk is a quantum counterpart of the random walk. It is expected that the model plays important roles in the quantum field. In the quantum information theory, entanglement is a key resource. We use the von Neumann entropy to measure the entanglement between the coin and the particle's position of the quantum walks. Also we deal with the Shannon entropy which is an important quantity in the information theory. In this paper, we show limits of the von Neumann entropy and the Shannon entropy of the quantum walks on the one dimensional lattice starting from the origin defined by arbitrary coin and initial state. In order to derive these limits, we use the path counting method which is a combinatorial method for computing probability amplitude.


Entropy ◽  
2020 ◽  
Vol 22 (5) ◽  
pp. 504
Author(s):  
Ce Wang ◽  
Caishi Wang

As a discrete-time quantum walk model on the one-dimensional integer lattice Z , the quantum walk recently constructed by Wang and Ye [Caishi Wang and Xiaojuan Ye, Quantum walk in terms of quantum Bernoulli noises, Quantum Information Processing 15 (2016), 1897–1908] exhibits quite different features. In this paper, we extend this walk to a higher dimensional case. More precisely, for a general positive integer d ≥ 2 , by using quantum Bernoulli noises we introduce a model of discrete-time quantum walk on the d-dimensional integer lattice Z d , which we call the d-dimensional QBN walk. The d-dimensional QBN walk shares the same coin space with the quantum walk constructed by Wang and Ye, although it is a higher dimensional extension of the latter. Moreover we prove that, for a range of choices of its initial state, the d-dimensional QBN walk has a limit probability distribution of d-dimensional standard Gauss type, which is in sharp contrast with the case of the usual higher dimensional quantum walks. Some other results are also obtained.


2015 ◽  
Vol 15 (1&2) ◽  
pp. 50-60
Author(s):  
F. Alberto Grunbaum ◽  
Takuya Machida

We consider a discrete-time 2-state quantum walk on the line. The state of the quantum walker evolves according to a rule which is determined by a coin-flip operator and a position-shift operator. In this paper we take a 3-periodic time evolution as the rule. For such a quantum walk, we get a limit distribution which expresses the asymptotic behavior of the walker after a long time. The limit distribution is different from that of a time-independent quantum walk or a 2-period time-dependent quantum walk. We give some analytical results and then consider a number of variants of our model and indicate the result of simulations for these ones.


2012 ◽  
Vol 12 (3&4) ◽  
pp. 314-333
Author(s):  
Kota Chisaki ◽  
Norio Konno ◽  
Etsuo Segawa

We consider a discrete-time quantum walk W_{t,\kappa} at time t on a graph with joined half lines J_\kappa, which is composed of \kappa half lines with the same origin. Our analysis is based on a reduction of the walk on a half line. The idea plays an important role to analyze the walks on some class of graphs with symmetric initial states. In this paper, we introduce a quantum walk with an enlarged basis and show that W_{t,\kappa} can be reduced to the walk on a half line even if the initial state is asymmetric. For W_{t,\kappa}, we obtain two types of limit theorems. The first one is an asymptotic behavior of W_{t,\kappa} which corresponds to localization. For some conditions, we find that the asymptotic behavior oscillates. The second one is the weak convergence theorem for W_{t,\kappa}. On each half line, W_{t,\kappa} converges to a density function like the case of the one-dimensional lattice with a scaling order of t. The results contain the cases of quantum walks starting from the general initial state on a half line with the general coin and homogeneous trees with the Grover coin.


2016 ◽  
Vol 16 (5&6) ◽  
pp. 516-529
Author(s):  
Takuya Machida

Quantum walks behave differently from what we expect and their probability distributions have unique structures. They have localization, singularities, a gap, and so on. Those features have been discovered from the view point of mathematics and reported as limit theorems. In this paper we focus on a time-dependent three-state quantum walk on the line and demonstrate a limit distribution. Three coin states at each position are iteratively updated by a coin-flip operator and a position-shift operator. As the result of the evolution, we end up to observe both localization and a gap in the limit distribution.


Entropy ◽  
2021 ◽  
Vol 23 (1) ◽  
pp. 85
Author(s):  
Luca Razzoli ◽  
Matteo G. A. Paris ◽  
Paolo Bordone

Continuous-time quantum walk describes the propagation of a quantum particle (or an excitation) evolving continuously in time on a graph. As such, it provides a natural framework for modeling transport processes, e.g., in light-harvesting systems. In particular, the transport properties strongly depend on the initial state and specific features of the graph under investigation. In this paper, we address the role of graph topology, and investigate the transport properties of graphs with different regularity, symmetry, and connectivity. We neglect disorder and decoherence, and assume a single trap vertex that is accountable for the loss processes. In particular, for each graph, we analytically determine the subspace of states having maximum transport efficiency. Our results provide a set of benchmarks for environment-assisted quantum transport, and suggest that connectivity is a poor indicator for transport efficiency. Indeed, we observe some specific correlations between transport efficiency and connectivity for certain graphs, but, in general, they are uncorrelated.


2021 ◽  
pp. 2250001
Author(s):  
Ce Wang

Open quantum walks (OQWs) (also known as open quantum random walks) are quantum analogs of classical Markov chains in probability theory, and have potential application in quantum information and quantum computation. Quantum Bernoulli noises (QBNs) are annihilation and creation operators acting on Bernoulli functionals, and can be used as the environment of an open quantum system. In this paper, by using QBNs as the environment, we introduce an OQW on a general higher-dimensional integer lattice. We obtain a quantum channel representation of the walk, which shows that the walk is indeed an OQW. We prove that all the states of the walk are separable provided its initial state is separable. We also prove that, for some initial states, the walk has a limit probability distribution of higher-dimensional Gauss type. Finally, we show links between the walk and a unitary quantum walk recently introduced in terms of QBNs.


Entropy ◽  
2018 ◽  
Vol 20 (8) ◽  
pp. 586 ◽  
Author(s):  
Xin Wang ◽  
Yi Zhang ◽  
Kai Lu ◽  
Xiaoping Wang ◽  
Kai Liu

The isomorphism problem involves judging whether two graphs are topologically the same and producing structure-preserving isomorphism mapping. It is widely used in various areas. Diverse algorithms have been proposed to solve this problem in polynomial time, with the help of quantum walks. Some of these algorithms, however, fail to find the isomorphism mapping. Moreover, most algorithms have very limited performance on regular graphs which are generally difficult to deal with due to their symmetry. We propose IsoMarking to discover an isomorphism mapping effectively, based on the quantum walk which is sensitive to topological structures. Firstly, IsoMarking marks vertices so that it can reduce the harmful influence of symmetry. Secondly, IsoMarking can ascertain whether the current candidate bijection is consistent with existing bijections and eventually obtains qualified mapping. Thirdly, our experiments on 1585 pairs of graphs demonstrate that our algorithm performs significantly better on both ordinary graphs and regular graphs.


Sign in / Sign up

Export Citation Format

Share Document