scholarly journals Higher-Dimensional Quantum Walk in Terms of Quantum Bernoulli Noises

Entropy ◽  
2020 ◽  
Vol 22 (5) ◽  
pp. 504
Author(s):  
Ce Wang ◽  
Caishi Wang

As a discrete-time quantum walk model on the one-dimensional integer lattice Z , the quantum walk recently constructed by Wang and Ye [Caishi Wang and Xiaojuan Ye, Quantum walk in terms of quantum Bernoulli noises, Quantum Information Processing 15 (2016), 1897–1908] exhibits quite different features. In this paper, we extend this walk to a higher dimensional case. More precisely, for a general positive integer d ≥ 2 , by using quantum Bernoulli noises we introduce a model of discrete-time quantum walk on the d-dimensional integer lattice Z d , which we call the d-dimensional QBN walk. The d-dimensional QBN walk shares the same coin space with the quantum walk constructed by Wang and Ye, although it is a higher dimensional extension of the latter. Moreover we prove that, for a range of choices of its initial state, the d-dimensional QBN walk has a limit probability distribution of d-dimensional standard Gauss type, which is in sharp contrast with the case of the usual higher dimensional quantum walks. Some other results are also obtained.

2021 ◽  
pp. 2250001
Author(s):  
Ce Wang

Open quantum walks (OQWs) (also known as open quantum random walks) are quantum analogs of classical Markov chains in probability theory, and have potential application in quantum information and quantum computation. Quantum Bernoulli noises (QBNs) are annihilation and creation operators acting on Bernoulli functionals, and can be used as the environment of an open quantum system. In this paper, by using QBNs as the environment, we introduce an OQW on a general higher-dimensional integer lattice. We obtain a quantum channel representation of the walk, which shows that the walk is indeed an OQW. We prove that all the states of the walk are separable provided its initial state is separable. We also prove that, for some initial states, the walk has a limit probability distribution of higher-dimensional Gauss type. Finally, we show links between the walk and a unitary quantum walk recently introduced in terms of QBNs.


2012 ◽  
Vol 12 (3&4) ◽  
pp. 314-333
Author(s):  
Kota Chisaki ◽  
Norio Konno ◽  
Etsuo Segawa

We consider a discrete-time quantum walk W_{t,\kappa} at time t on a graph with joined half lines J_\kappa, which is composed of \kappa half lines with the same origin. Our analysis is based on a reduction of the walk on a half line. The idea plays an important role to analyze the walks on some class of graphs with symmetric initial states. In this paper, we introduce a quantum walk with an enlarged basis and show that W_{t,\kappa} can be reduced to the walk on a half line even if the initial state is asymmetric. For W_{t,\kappa}, we obtain two types of limit theorems. The first one is an asymptotic behavior of W_{t,\kappa} which corresponds to localization. For some conditions, we find that the asymptotic behavior oscillates. The second one is the weak convergence theorem for W_{t,\kappa}. On each half line, W_{t,\kappa} converges to a density function like the case of the one-dimensional lattice with a scaling order of t. The results contain the cases of quantum walks starting from the general initial state on a half line with the general coin and homogeneous trees with the Grover coin.


Symmetry ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1134
Author(s):  
Kenta Higuchi ◽  
Takashi Komatsu ◽  
Norio Konno ◽  
Hisashi Morioka ◽  
Etsuo Segawa

We consider the discrete-time quantum walk whose local dynamics is denoted by a common unitary matrix C at the perturbed region {0,1,⋯,M−1} and free at the other positions. We obtain the stationary state with a bounded initial state. The initial state is set so that the perturbed region receives the inflow ωn at time n(|ω|=1). From this expression, we compute the scattering on the surface of −1 and M and also compute the quantity how quantum walker accumulates in the perturbed region; namely, the energy of the quantum walk, in the long time limit. The frequency of the initial state of the influence to the energy is symmetric on the unit circle in the complex plain. We find a discontinuity of the energy with respect to the frequency of the inflow.


2013 ◽  
Vol 13 (5&6) ◽  
pp. 430-438
Author(s):  
Takuya Machida

Since a limit distribution of a discrete-time quantum walk on the line was derived in 2002, a lot of limit theorems for quantum walks with a localized initial state have been reported. On the other hand, in quantum probability theory, there are four notions of independence (free, monotone, commuting, and boolean independence) and quantum central limit theorems associated to each independence have been investigated. The relation between quantum walks and quantum probability theory is still unknown. As random walks are fundamental models in the Kolmogorov probability theory, can the quantum walks play an important role in quantum probability theory? To discuss this problem, we focus on a discrete-time 2-state quantum walk with a non-localized initial state and present a limit theorem. By using our limit theorem, we generate probability laws in the quantum central limit theorems from the quantum walk.


2018 ◽  
Vol 16 (03) ◽  
pp. 1850023
Author(s):  
Takuya Machida

Discrete-time quantum walks are considered a counterpart of random walks and their study has been getting attention since around 2000. In this paper, we focus on a quantum walk which generates a probability distribution splitting to two parts. The quantum walker with two coin states spreads at points, represented by integers, and we analyze the chance of finding the walker at each position after it carries out a unitary evolution a lot of times. The result is reported as a long-time limit distribution from which one can see an approximation to the finding probability.


2006 ◽  
Vol 04 (03) ◽  
pp. 573-583 ◽  
Author(s):  
L. SHERIDAN ◽  
N. PAUNKOVIĆ ◽  
Y. OMAR ◽  
S. BOSE

We introduce the idea of a quantum walk with two particles and study it for the case of a discrete time walk on a line. We consider both separable and maximally entangled initial conditions, and show how the entanglement and the relative phase between the states describing the coin degree of freedom of each particle will influence the evolution of the quantum walk. In particular, these factors will have consequences for the distance between the particles and the probability of finding them at a given point, yielding results that cannot be obtained from a separable initial state, be it pure or mixed. Finally, we review briefly proposals for implementations.


2019 ◽  
Vol 33 (23) ◽  
pp. 1950270 ◽  
Author(s):  
Duc Manh Nguyen ◽  
Sunghwan Kim

The recent paper entitled “Generalized teleportation by means of discrete-time quantum walks on [Formula: see text]-lines and [Formula: see text]-cycles” by Yang et al. [Mod. Phys. Lett. B 33(6) (2019) 1950069] proposed the quantum teleportation by means of discrete-time quantum walks on [Formula: see text]-lines and [Formula: see text]-cycles. However, further investigation shows that the quantum walk over the one-dimensional infinite line can be based over the [Formula: see text]-cycles and cannot be based on [Formula: see text]-lines. The proofs of our claims on quantum walks based on finite lines are also provided in detail.


2014 ◽  
Vol 14 (5&6) ◽  
pp. 417-438
Author(s):  
Katharine E. Barr ◽  
Tim J. Proctor ◽  
Daniel Allen ◽  
Viv M. Kendon

We systematically investigated perfect state transfer between antipodal nodes of discrete time quantum walks on variants of the cycles $C_4$, $C_6$ and $C_8$ for three choices of coin operator. Perfect state transfer was found, in general, to be very rare, only being preserved for a very small number of ways of modifying the cycles. We observed that some of our useful modifications of $C_4$ could be generalised to an arbitrary number of nodes, and present three families of graphs which admit quantum walks with interesting dynamics either in the continuous time walk, or in the discrete time walk for appropriate selections of coin and initial conditions. These dynamics are either periodicity, perfect state transfer, or very high fidelity state transfer. These families are modifications of families known not to exhibit periodicity or perfect state transfer in general. The robustness of the dynamics is tested by varying the initial state, interpolating between structures and by adding decoherence.


2011 ◽  
Vol 11 (9&10) ◽  
pp. 855-866
Author(s):  
Yusuke Ide ◽  
Norio Konno ◽  
Takuya Machida

The discrete-time quantum walk is a quantum counterpart of the random walk. It is expected that the model plays important roles in the quantum field. In the quantum information theory, entanglement is a key resource. We use the von Neumann entropy to measure the entanglement between the coin and the particle's position of the quantum walks. Also we deal with the Shannon entropy which is an important quantity in the information theory. In this paper, we show limits of the von Neumann entropy and the Shannon entropy of the quantum walks on the one dimensional lattice starting from the origin defined by arbitrary coin and initial state. In order to derive these limits, we use the path counting method which is a combinatorial method for computing probability amplitude.


Entropy ◽  
2020 ◽  
Vol 22 (4) ◽  
pp. 486
Author(s):  
Caishi Wang ◽  
Suling Ren ◽  
Yuling Tang

In this paper, we consider limit probability distributions of the quantum walk recently introduced by Wang and Ye (C.S. Wang and X.J. Ye, Quantum walk in terms of quantum Bernoulli noises, Quantum Inf. Process. 15 (2016), no. 5, 1897–1908). We first establish several technical theorems, which themselves are also interesting. Then, by using these theorems, we prove that, for a wide range of choices of the initial state, the above-mentioned quantum walk has a limit probability distribution of standard Gauss type, which actually gives a new limit theorem for the walk.


Sign in / Sign up

Export Citation Format

Share Document