scholarly journals Transport Efficiency of Continuous-Time Quantum Walks on Graphs

Entropy ◽  
2021 ◽  
Vol 23 (1) ◽  
pp. 85
Author(s):  
Luca Razzoli ◽  
Matteo G. A. Paris ◽  
Paolo Bordone

Continuous-time quantum walk describes the propagation of a quantum particle (or an excitation) evolving continuously in time on a graph. As such, it provides a natural framework for modeling transport processes, e.g., in light-harvesting systems. In particular, the transport properties strongly depend on the initial state and specific features of the graph under investigation. In this paper, we address the role of graph topology, and investigate the transport properties of graphs with different regularity, symmetry, and connectivity. We neglect disorder and decoherence, and assume a single trap vertex that is accountable for the loss processes. In particular, for each graph, we analytically determine the subspace of states having maximum transport efficiency. Our results provide a set of benchmarks for environment-assisted quantum transport, and suggest that connectivity is a poor indicator for transport efficiency. Indeed, we observe some specific correlations between transport efficiency and connectivity for certain graphs, but, in general, they are uncorrelated.

2010 ◽  
Vol 08 (08) ◽  
pp. 1323-1335 ◽  
Author(s):  
S. SALIMI ◽  
R. RADGOHAR ◽  
M. M. SOLTANZADEH

We study the classical and quantum transport processes on some finite networks and model them by continuous-time random walks (CTRW) and continuous-time quantum walks (CTQW), respectively. We calculate the classical and quantum transition probabilities between two nodes of the network. We numerically show that there is a high probability to find the walker at the initial node for CTQWs on the underlying networks due to the interference phenomenon, even for long times. To get global information (independent of the starting node) about the transport efficiency, we average the return probability over all nodes of the network. We apply the decay rate and the asymptotic value of the average of the return probability to evaluate the transport efficiency. Our numerical results prove that the existence of the symmetry in the underlying networks makes quantum transport less efficient than the classical one. In addition, we find that the increasing of the symmetry of these networks decreases the efficiency of quantum transport on them.


Entropy ◽  
2018 ◽  
Vol 20 (8) ◽  
pp. 586 ◽  
Author(s):  
Xin Wang ◽  
Yi Zhang ◽  
Kai Lu ◽  
Xiaoping Wang ◽  
Kai Liu

The isomorphism problem involves judging whether two graphs are topologically the same and producing structure-preserving isomorphism mapping. It is widely used in various areas. Diverse algorithms have been proposed to solve this problem in polynomial time, with the help of quantum walks. Some of these algorithms, however, fail to find the isomorphism mapping. Moreover, most algorithms have very limited performance on regular graphs which are generally difficult to deal with due to their symmetry. We propose IsoMarking to discover an isomorphism mapping effectively, based on the quantum walk which is sensitive to topological structures. Firstly, IsoMarking marks vertices so that it can reduce the harmful influence of symmetry. Secondly, IsoMarking can ascertain whether the current candidate bijection is consistent with existing bijections and eventually obtains qualified mapping. Thirdly, our experiments on 1585 pairs of graphs demonstrate that our algorithm performs significantly better on both ordinary graphs and regular graphs.


2014 ◽  
Vol 90 (3) ◽  
Author(s):  
Zoltán Darázs ◽  
Anastasiia Anishchenko ◽  
Tamás Kiss ◽  
Alexander Blumen ◽  
Oliver Mülken

Author(s):  
NORIO KONNO

A quantum central limit theorem for a continuous-time quantum walk on a homogeneous tree is derived from quantum probability theory. As a consequence, a new type of limit theorems for another continuous-time walk introduced by the walk is presented. The limit density is similar to that given by a continuous-time quantum walk on the one-dimensional lattice.


2011 ◽  
Vol 11 (9&10) ◽  
pp. 855-866
Author(s):  
Yusuke Ide ◽  
Norio Konno ◽  
Takuya Machida

The discrete-time quantum walk is a quantum counterpart of the random walk. It is expected that the model plays important roles in the quantum field. In the quantum information theory, entanglement is a key resource. We use the von Neumann entropy to measure the entanglement between the coin and the particle's position of the quantum walks. Also we deal with the Shannon entropy which is an important quantity in the information theory. In this paper, we show limits of the von Neumann entropy and the Shannon entropy of the quantum walks on the one dimensional lattice starting from the origin defined by arbitrary coin and initial state. In order to derive these limits, we use the path counting method which is a combinatorial method for computing probability amplitude.


Entropy ◽  
2020 ◽  
Vol 22 (5) ◽  
pp. 504
Author(s):  
Ce Wang ◽  
Caishi Wang

As a discrete-time quantum walk model on the one-dimensional integer lattice Z , the quantum walk recently constructed by Wang and Ye [Caishi Wang and Xiaojuan Ye, Quantum walk in terms of quantum Bernoulli noises, Quantum Information Processing 15 (2016), 1897–1908] exhibits quite different features. In this paper, we extend this walk to a higher dimensional case. More precisely, for a general positive integer d ≥ 2 , by using quantum Bernoulli noises we introduce a model of discrete-time quantum walk on the d-dimensional integer lattice Z d , which we call the d-dimensional QBN walk. The d-dimensional QBN walk shares the same coin space with the quantum walk constructed by Wang and Ye, although it is a higher dimensional extension of the latter. Moreover we prove that, for a range of choices of its initial state, the d-dimensional QBN walk has a limit probability distribution of d-dimensional standard Gauss type, which is in sharp contrast with the case of the usual higher dimensional quantum walks. Some other results are also obtained.


Author(s):  
Yan Wang

Stochastic diffusion is a general phenomenon observed in various national and engineering systems. It is typically modeled by either stochastic differential equation (SDE) or Fokker-Planck equation (FPE), which are equivalent approaches. Path integral is an accurate and effective method to solve FPEs. Yet, computational efficiency is the common challenge for path integral and other numerical methods, include time and space complexities. Previously, one-dimensional continuous-time quantum walk was used to simulate diffusion. By combining quantum diffusion and random diffusion, the new approach can accelerate the simulation with longer time steps than those in path integral. It was demonstrated that simulation can be dozens or even hundreds of times faster. In this paper, a new generic quantum operator is proposed to simulate drift-diffusion processes in high-dimensional space, which combines quantum walks on graphs with traditional path integral approaches. Probability amplitudes are computed efficiently by spectral analysis. The efficiency of the new method is demonstrated with stochastic resonance problems.


2022 ◽  
Vol 22 (1&2) ◽  
pp. 53-85
Author(s):  
Thomas G. Wong

The task of finding an entry in an unsorted list of $N$ elements famously takes $O(N)$ queries to an oracle for a classical computer and $O(\sqrt{N})$ queries for a quantum computer using Grover's algorithm. Reformulated as a spatial search problem, this corresponds to searching the complete graph, or all-to-all network, for a marked vertex by querying an oracle. In this tutorial, we derive how discrete- and continuous-time (classical) random walks and quantum walks solve this problem in a thorough and pedagogical manner, providing an accessible introduction to how random and quantum walks can be used to search spatial regions. Some of the results are already known, but many are new. For large $N$, the random walks converge to the same evolution, both taking $N \ln(1/\epsilon)$ time to reach a success probability of $1-\epsilon$. In contrast, the discrete-time quantum walk asymptotically takes $\pi\sqrt{N}/2\sqrt{2}$ timesteps to reach a success probability of $1/2$, while the continuous-time quantum walk takes $\pi\sqrt{N}/2$ time to reach a success probability of $1$.


2006 ◽  
Vol 6 (3) ◽  
pp. 263-276 ◽  
Author(s):  
L. Fedichkin ◽  
D. Solenov ◽  
C. Tamon

We prove analytical results showing that decoherence can be useful for mixing time in a continuous-time quantum walk on finite cycles. This complements the numerical observations by Kendon and Tregenna (Physical Review A 67 (2003), 042315) of a similar phenomenon for discrete-time quantum walks. Our analytical treatment of continuous-time quantum walks includes a continuous monitoring of all vertices that induces the decoherence process. We identify the dynamics of the probability distribution and observe how mixing times undergo the transition from quantum to classical behavior as our decoherence parameter grows from zero to infinity. Our results show that, for small rates of decoherence, the mixing time improves linearly with decoherence, whereas for large rates of decoherence, the mixing time deteriorates linearly towards the classical limit. In the middle region of decoherence rates, our numerical data confirms the existence of a unique optimal rate for which the mixing time is minimized.


2008 ◽  
Vol 06 (04) ◽  
pp. 945-957 ◽  
Author(s):  
S. SALIMI

In the present paper, we study the continuous-time quantum walk on quotient graphs. On such graphs, there is a straightforward reduction of the problem to a subspace that can be considerably smaller than the original one. Along the lines of reductions, by using the idea of calculation of the probability amplitudes for continuous-time quantum walk in terms of the spectral distribution associated with the adjacency matrix of graphs [Jafarizadeh and Salimi (Ann. Phys.322 (2007))], we show that the continuous-time quantum walk on original graph Γ induces a continuous-time quantum walk on quotient graph ΓH. Finally, for example, we investigate the continuous-time quantum walk on some quotient Cayley graphs.


Sign in / Sign up

Export Citation Format

Share Document