scholarly journals A limit theorem for a splitting distribution of a quantum walk

2018 ◽  
Vol 16 (03) ◽  
pp. 1850023
Author(s):  
Takuya Machida

Discrete-time quantum walks are considered a counterpart of random walks and their study has been getting attention since around 2000. In this paper, we focus on a quantum walk which generates a probability distribution splitting to two parts. The quantum walker with two coin states spreads at points, represented by integers, and we analyze the chance of finding the walker at each position after it carries out a unitary evolution a lot of times. The result is reported as a long-time limit distribution from which one can see an approximation to the finding probability.

2015 ◽  
Vol 15 (1&2) ◽  
pp. 50-60
Author(s):  
F. Alberto Grunbaum ◽  
Takuya Machida

We consider a discrete-time 2-state quantum walk on the line. The state of the quantum walker evolves according to a rule which is determined by a coin-flip operator and a position-shift operator. In this paper we take a 3-periodic time evolution as the rule. For such a quantum walk, we get a limit distribution which expresses the asymptotic behavior of the walker after a long time. The limit distribution is different from that of a time-independent quantum walk or a 2-period time-dependent quantum walk. We give some analytical results and then consider a number of variants of our model and indicate the result of simulations for these ones.


Symmetry ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1134
Author(s):  
Kenta Higuchi ◽  
Takashi Komatsu ◽  
Norio Konno ◽  
Hisashi Morioka ◽  
Etsuo Segawa

We consider the discrete-time quantum walk whose local dynamics is denoted by a common unitary matrix C at the perturbed region {0,1,⋯,M−1} and free at the other positions. We obtain the stationary state with a bounded initial state. The initial state is set so that the perturbed region receives the inflow ωn at time n(|ω|=1). From this expression, we compute the scattering on the surface of −1 and M and also compute the quantity how quantum walker accumulates in the perturbed region; namely, the energy of the quantum walk, in the long time limit. The frequency of the initial state of the influence to the energy is symmetric on the unit circle in the complex plain. We find a discontinuity of the energy with respect to the frequency of the inflow.


2018 ◽  
Vol 29 (10) ◽  
pp. 1850098 ◽  
Author(s):  
R. F. S. Andrade ◽  
A. M. C. Souza

Properties of one-dimensional discrete-time quantum walks (DTQWs) are sensitive to the presence of inhomogeneities in the substrate, which can be generated by defining position-dependent coin operators. Deterministic aperiodic sequences of two or more symbols provide ideal environments where these properties can be explored in a controlled way. Based on an exhaustive numerical study, this work discusses a two-coin model resulting from the construction rules that lead to the usual fractal Cantor set. Although the fraction of the less frequent coin [Formula: see text] as the size of the chain is increased, it leaves peculiar properties in the walker dynamics. They are characterized by the wave function, from which results for the probability distribution and its variance, as well as the entanglement entropy, were obtained. A number of results for different choices of the two coins are presented. The entanglement entropy has shown to be very sensitive to uncovering subtle quantum effects present in the model.


2013 ◽  
Vol 13 (5&6) ◽  
pp. 430-438
Author(s):  
Takuya Machida

Since a limit distribution of a discrete-time quantum walk on the line was derived in 2002, a lot of limit theorems for quantum walks with a localized initial state have been reported. On the other hand, in quantum probability theory, there are four notions of independence (free, monotone, commuting, and boolean independence) and quantum central limit theorems associated to each independence have been investigated. The relation between quantum walks and quantum probability theory is still unknown. As random walks are fundamental models in the Kolmogorov probability theory, can the quantum walks play an important role in quantum probability theory? To discuss this problem, we focus on a discrete-time 2-state quantum walk with a non-localized initial state and present a limit theorem. By using our limit theorem, we generate probability laws in the quantum central limit theorems from the quantum walk.


2019 ◽  
Vol 33 (23) ◽  
pp. 1950270 ◽  
Author(s):  
Duc Manh Nguyen ◽  
Sunghwan Kim

The recent paper entitled “Generalized teleportation by means of discrete-time quantum walks on [Formula: see text]-lines and [Formula: see text]-cycles” by Yang et al. [Mod. Phys. Lett. B 33(6) (2019) 1950069] proposed the quantum teleportation by means of discrete-time quantum walks on [Formula: see text]-lines and [Formula: see text]-cycles. However, further investigation shows that the quantum walk over the one-dimensional infinite line can be based over the [Formula: see text]-cycles and cannot be based on [Formula: see text]-lines. The proofs of our claims on quantum walks based on finite lines are also provided in detail.


Entropy ◽  
2020 ◽  
Vol 22 (5) ◽  
pp. 504
Author(s):  
Ce Wang ◽  
Caishi Wang

As a discrete-time quantum walk model on the one-dimensional integer lattice Z , the quantum walk recently constructed by Wang and Ye [Caishi Wang and Xiaojuan Ye, Quantum walk in terms of quantum Bernoulli noises, Quantum Information Processing 15 (2016), 1897–1908] exhibits quite different features. In this paper, we extend this walk to a higher dimensional case. More precisely, for a general positive integer d ≥ 2 , by using quantum Bernoulli noises we introduce a model of discrete-time quantum walk on the d-dimensional integer lattice Z d , which we call the d-dimensional QBN walk. The d-dimensional QBN walk shares the same coin space with the quantum walk constructed by Wang and Ye, although it is a higher dimensional extension of the latter. Moreover we prove that, for a range of choices of its initial state, the d-dimensional QBN walk has a limit probability distribution of d-dimensional standard Gauss type, which is in sharp contrast with the case of the usual higher dimensional quantum walks. Some other results are also obtained.


2015 ◽  
Vol 13 (07) ◽  
pp. 1550054 ◽  
Author(s):  
Takuya Machida

A return probability of random walks is one of the interesting subjects. As it is well known, the return probability strongly depends on the structure of the space where the random walker moves. On the other hand, the return probability of quantum walks, which are quantum models corresponding to random walks, has also been investigated to some extend lately. In this paper, we take care of a discrete-time three-state quantum walk on a hexagonal lattice from the view point of mathematics. The mathematical result shows a limit of the return probability when the walker starts off at the origin. The result of the limit tells us about a possibility of localization at the position and a dependence of localization on the initial state.


Quantum ◽  
2021 ◽  
Vol 5 ◽  
pp. 523
Author(s):  
Marcin Markiewicz ◽  
Marcin Karczewski ◽  
Pawel Kurzynski

In the right conditions, removing one particle from a multipartite bound state can make it fall apart. This feature, known as the "Borromean property", has been recently demonstrated experimentally in Efimov states. One could expect that such peculiar behavior should be linked with the presence of strong inter-particle correlations. However, any exploration of this connection is hindered by the complexity of the physical systems exhibiting the Borromean property. To overcome this problem, we introduce a simple dynamical toy model based on a discrete-time quantum walk of many interacting particles. We show that the particles described by it need to exhibit the Greenberger-Horne-Zeillinger (GHZ) entanglement to form Borromean bound states. As this type of entanglement is very prone to particle losses, our work demonstrates an intuitive link between correlations and Borromean properties of the system. Moreover, we discuss our findings in the context of the formation of composite particles.


2022 ◽  
Vol 22 (1&2) ◽  
pp. 53-85
Author(s):  
Thomas G. Wong

The task of finding an entry in an unsorted list of $N$ elements famously takes $O(N)$ queries to an oracle for a classical computer and $O(\sqrt{N})$ queries for a quantum computer using Grover's algorithm. Reformulated as a spatial search problem, this corresponds to searching the complete graph, or all-to-all network, for a marked vertex by querying an oracle. In this tutorial, we derive how discrete- and continuous-time (classical) random walks and quantum walks solve this problem in a thorough and pedagogical manner, providing an accessible introduction to how random and quantum walks can be used to search spatial regions. Some of the results are already known, but many are new. For large $N$, the random walks converge to the same evolution, both taking $N \ln(1/\epsilon)$ time to reach a success probability of $1-\epsilon$. In contrast, the discrete-time quantum walk asymptotically takes $\pi\sqrt{N}/2\sqrt{2}$ timesteps to reach a success probability of $1/2$, while the continuous-time quantum walk takes $\pi\sqrt{N}/2$ time to reach a success probability of $1$.


2013 ◽  
Vol 12 (04) ◽  
pp. 1350024 ◽  
Author(s):  
MIN LI ◽  
YONG-SHENG ZHANG ◽  
GUANG-CAN GUO

We construct a Parrondo's game using discrete-time quantum walks (DTQWs). Two losing games are represented by two different coin operators. By mixing the two coin operators UA(αA, βA, γA) and UB(αB, βB, γB), we may win the game. Here, we mix the two games in position instead of time. With a number of selections of the parameters, we can win the game with sequences ABB, ABBB, etc. If we set βA = 45°, γA = 0, αB = 0, βB = 88°, we find game 1 with [Formula: see text], [Formula: see text] will win and get the most profit. If we set αA = 0, βA = 45°, αB = 0, βB = 88° and game 2 with [Formula: see text], [Formula: see text] will win most. Game 1 is equivalent to game 2 with changes in sequences and steps. But at large enough steps, the game will lose at last. Parrondo's paradox does not exist in classical situation with our model.


Sign in / Sign up

Export Citation Format

Share Document