LIE GROUP FORMULATION FOR ANALYSIS OF KICKING MOTION IN HUMANOID SOCCER ROBOTS

2008 ◽  
Vol 05 (03) ◽  
pp. 501-522
Author(s):  
LIANDONG ZHANG ◽  
CHANGJIU ZHOU

In this paper, we develop a general Lie group framework for analysis of kicking motion in humanoid soccer robots which aims to capture the multidimensional kicking information and hence to study how to develop more powerful and skilful kicking motion for humanoid soccer robots. To maintain dynamic stability while kicking is being performed, the zero-moment point (ZMP) is used to evaluate the performance of the humanoid kick. The proposed Lie-group-formulation-based compensation approach for force/torque sensing from the humanoid ankle has been implemented on, Robo-Erectus, our humanoid soccer robot. Humanoid kicking experiments have been conducted to verify the effectiveness of the proposed approach.

Sensors ◽  
2019 ◽  
Vol 19 (16) ◽  
pp. 3588 ◽  
Author(s):  
Portilla ◽  
Saltarén ◽  
Espinosa ◽  
Barroso ◽  
Cely ◽  
...  

In this research, the dynamic walking of a legged robot in underwater environments is proposed. For this goal, the underwater zero moment point (Uzmp) is proposed in order to generate the trajectory of the centre of the mass of the robot. Also, the underwater zero moment point auxiliary (Uzmp aux.) is employed to stabilize the balance of the robot before it undergoes any external perturbations. The concept demonstration of a legged robot with hydraulic actuators is developed. Moreover, the control that was used is described and the hydrodynamic variables of the robot are determined. The results demonstrate the validity of the concepts that are proposed in this article, and the dynamic walking of the legged robot in an underwater environment is successfully demonstrated.


Sign in / Sign up

Export Citation Format

Share Document