ASSESSMENT OF COMPUTATIONAL MODELS FOR LAMINATED COMPOSITE PLATES

2007 ◽  
Vol 04 (04) ◽  
pp. 633-644
Author(s):  
K. SUBHA ◽  
SHASHIDHARAN ◽  
S. SAVITHRI ◽  
V. SYAM PRAKASH

In this paper, results of the stress analysis of composite laminates subjected to mechanical load based on different higher order shear deformation theories are presented. Among the many equivalent single layer theories (ESL), the third-order shear deformation theory of Reddy is the most widely accepted model in the study of laminates. This model cannot represent shear stress continuity at the interfaces and zigzag nature of the displacement field. To improve the accuracy of transverse shear stress prediction, layer wise theories have proved to be very promising techniques. In all these theories, zero transverse shear stress boundary conditions at the top and the bottom of the plate are imposed. In many engineering applications, this requirement is not valid when the plate is subjected to shear traction parallel to the surface. To account for this, a displacement model which releases the zero transverse shear stress boundary condition is taken. The unconstrained third-order shear deformation theory (UTSDT) is useful where the boundary layer shear stress is significant. Navier solutions for bending and stress analysis of cross ply laminates are presented using layer wise model, unconstrained third-order shear deformation model and Reddy's ESL model, and compared with 3D elasticity solutions.

2009 ◽  
Vol 79-82 ◽  
pp. 1313-1316 ◽  
Author(s):  
Ruediger Schmidt ◽  
Thang Duy Vu

This paper deals with nonlinear finite element analysis of smart structures with integrated piezoelectric layers. Two geometrically nonlinear finite plate elements incorporating piezoelectric layers are applied based either on first- or third-order transverse shear deformation theory. Nonlinear strain-displacement relations are used that are valid for small strains and moderate rotations. Numerical tests are performed for the time histories of the tip displacement and sensor output voltage of a thin beam with a piezoelectric patch bonded to the surface.


2020 ◽  
Vol 71 (7) ◽  
pp. 853-867
Author(s):  
Phuc Pham Minh

The paper researches the free vibration of a rectangular plate with one or more cracks. The plate thickness varies along the x-axis with linear rules. Using Shi's third-order shear deformation theory and phase field theory to set up the equilibrium equations, which are solved by finite element methods. The frequency of free vibration plates is calculated and compared with the published articles, the agreement between the results is good. Then, the paper will examine the free vibration frequency of plate depending on the change of the plate thickness ratio, the length of cracks, the number of cracks, the location of cracks and different boundary conditions


Author(s):  
Mohamed-Ouejdi Belarbi ◽  
Abdelhak Khechai ◽  
Aicha Bessaim ◽  
Mohammed-Sid-Ahmed Houari ◽  
Aman Garg ◽  
...  

In this paper, the bending behavior of functionally graded single-layered, symmetric and non-symmetric sandwich beams is investigated according to a new higher order shear deformation theory. Based on this theory, a novel parabolic shear deformation function is developed and applied to investigate the bending response of sandwich beams with homogeneous hardcore and softcore. The present theory provides an accurate parabolic distribution of transverse shear stress across the thickness and satisfies the zero traction boundary conditions on the top and bottom surfaces of the functionally graded sandwich beam without using any shear correction factors. The governing equations derived herein are solved by employing the finite element method using a two-node beam element, developed for this purpose. The material properties of functionally graded sandwich beams are graded through the thickness according to the power-law distribution. The predictive capability of the proposed finite element model is demonstrated through illustrative examples. Four types of beam support, i.e. simply-simply, clamped-free, clamped–clamped, and clamped-simply, are used to study how the beam deflection and both axial and transverse shear stresses are affected by the variation of volume fraction index and beam length-to-height ratio. Results of the numerical analysis have been reported and compared with those available in the open literature to evaluate the accuracy and robustness of the proposed finite element model. The comparisons with other higher order shear deformation theories verify that the proposed beam element is accurate, presents fast rate of convergence to the reference results and it is also valid for both thin and thick functionally graded sandwich beams. Further, some new results are reported in the current study, which will serve as a benchmark for future research.


2012 ◽  
Vol 29 (2) ◽  
pp. 241-252 ◽  
Author(s):  
A. S. Sayyad ◽  
Y. M. Ghugal

AbstractThis paper deals with the problem of stress distribution in orthotropic and laminated plates subjected to central concentrated load. An equivalent single layer trigonometric shear deformation theory taking into account transverse shear deformation effect as well as transverse normal strain effect is used to obtain in-plane normal and transverse shear stresses through the thickness of plate. Governing equations and boundary conditions of the theory are obtained using the principle of virtual work. A simply supported plate with central concentrated load is considered for the numerical analysis. Anomalous behavior of inplane normal and transverse shear stresses is observed due to effect of stress concentration compared to classical plate theory and first order shear deformation theory.


Sign in / Sign up

Export Citation Format

Share Document