Effect of Stress Concentration on Laminated Plates

2012 ◽  
Vol 29 (2) ◽  
pp. 241-252 ◽  
Author(s):  
A. S. Sayyad ◽  
Y. M. Ghugal

AbstractThis paper deals with the problem of stress distribution in orthotropic and laminated plates subjected to central concentrated load. An equivalent single layer trigonometric shear deformation theory taking into account transverse shear deformation effect as well as transverse normal strain effect is used to obtain in-plane normal and transverse shear stresses through the thickness of plate. Governing equations and boundary conditions of the theory are obtained using the principle of virtual work. A simply supported plate with central concentrated load is considered for the numerical analysis. Anomalous behavior of inplane normal and transverse shear stresses is observed due to effect of stress concentration compared to classical plate theory and first order shear deformation theory.

2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
B. Sidda Reddy ◽  
J. Suresh Kumar ◽  
C. Eswara Reddy ◽  
K. Vijaya Kumar Reddy

The prime aim of the present study is to present analytical formulations and solutions for the buckling analysis of simply supported functionally graded plates (FGPs) using higher order shear deformation theory (HSDT) without enforcing zero transverse shear stresses on the top and bottom surfaces of the plate. It does not require shear correction factors and transverse shear stresses vary parabolically across the thickness. Material properties of the plate are assumed to vary in the thickness direction according to a power law distribution in terms of the volume fractions of the constituents. The equations of motion and boundary conditions are derived using the principle of virtual work. Solutions are obtained for FGPs in closed-form using Navier’s technique. Comparison studies are performed to verify the validity of the present results from which it can be concluded that the proposed theory is accurate and efficient in predicting the buckling behavior of functionally graded plates. The effect of side-to-thickness ratio, aspect ratio, modulus ratio, the volume fraction exponent, and the loading conditions on the critical buckling load of FGPs is also investigated and discussed.


Author(s):  
A. H. Akbarzadeh ◽  
M. Arian Nik ◽  
D. Pasini

Constant and variable stiffness strategies have been developed to design a composite laminate. With the former, each layer is designed with straight fibers that have the highest stiffness and strength in the fiber direction. With the latter, on the other hand, the stiffness can change within each layer by placing the fibers along a curvilinear fiber path. A variable stiffness design results in improved structural performance, as well as opens up opportunities to search for trade-off among structural properties. During the manufacture of a variable stiffness design with Automated Fiber Placement, certain defects in the form of gaps and overlaps could appear within the laminate and affect the laminate performance. In this study, we use the first-order shear deformation theory to assess the effect of transverse shear stresses on the critical buckling load, free and forced vibration of a variable stiffness laminate with embedded defects, an issue so far rarely examined in literature. The governing differential equations for the static analysis are first derived. A semi-analytic solution is then obtained using the hybrid Fourier-Galerkin method and the numeric time integration technique. The eigenvalue analysis is also conducted to determine the fundamental frequency and critical buckling load of the plate. It is found that the behavior of a variable stiffness plate is much more affected by the shear stresses than a constant stiffness plate. Ignoring the effect of transverse shear stresses results in 34% error in the predicted buckling load of a variable stiffness laminate with overlaps and a length-to-thickness ratio of 10.


Materials ◽  
2019 ◽  
Vol 12 (15) ◽  
pp. 2385 ◽  
Author(s):  
Hoang Nam Nguyen ◽  
Tran Thi Hong ◽  
Pham Van Vinh ◽  
Nguyen Dinh Quang ◽  
Do Van Thom

A refined simple first-order shear deformation theory is developed to investigate the static bending and free vibration of advanced composite plates such as functionally graded plates. By introducing the new distribution shape function, the transverse shear strain and shear stress have a parabolic distribution across the thickness of the plates, and they equal zero at the surfaces of the plates. Hence, the new refined theory needs no shear correction factor. The Navier solution is applied to investigate the static bending and free vibration of simply supported advanced composite plates. The proposed theory shows an improvement in calculating the deflections and frequencies of advanced composite plates. The formulation and transformation of the present theory are as simple as the simple first-order shear deformation. The comparisons of deflection, axial stresses, transverse shear stresses, and frequencies of the plates obtained by the proposed theory with published results of different theories are carried out to show the efficiency and accuracy of the new theory. In addition, some discussions on the influence of various parameters such as the power-law index, the slenderness ratio, and the aspect ratio are carried out, which are useful for the design and testing of advanced composite structures.


2017 ◽  
Vol 09 (01) ◽  
pp. 1750007 ◽  
Author(s):  
Atteshamuddin S. Sayyad ◽  
Yuwaraj M. Ghugal

In this paper, a displacement-based unified shear deformation theory is developed for the analysis of shear deformable advanced composite beams and plates. The theory is developed with the inclusion of parabolic (PSDT), trigonometric (TSDT), hyperbolic (HSDT) and exponential (ESDT) shape functions in terms of thickness coordinate to account for the effect of transverse shear deformation. The in-plane displacements consider the combined effect of bending rotation and shear rotation. The use of parabolic shape function in the present theory leads to the Reddy’s theory, but trigonometric, hyperbolic and exponential functions are first time used in the present displacement field. The present theory is accounted for an accurate distribution of transverse shear stresses through the thickness of plate, therefore, it does not require problem dependent shear correction factor. Governing equations and associated boundary conditions of the theory are derived from the principle of virtual work. Navier type closed-form solutions are obtained for simply supported boundary conditions. To verify the global response of the present theory it is applied for the bending of both one-dimensional (beams) and two-dimensional (plates) functionally graded, laminated composite and sandwich structures. The present results are compared with exact elasticity solution and other higher order shear deformation theories to verify the accuracy and efficiency of the present theory.


2020 ◽  
Vol 29 ◽  
pp. 096369351987573 ◽  
Author(s):  
Yamna Belkhodja ◽  
Djamel Ouinas ◽  
Fatima Zohra Zaoui ◽  
Hamida Fekirini

Two assumptions have been made based on by this proposed theory, which come from recently developed exponential–trigonometric shape function for transverse shear deformation effect and a simple higher order shear deformation theory for plate, based on a constraint between two rotational displacements of axis parallel to the plate midplane, about the axes x, y Cartesian coordinates system, which caused fewer unknown number. For the application of this method, a displacement field extended as only bending membrane for transverse displacement is used, a governing equations of motion as a result are determined according to Hamilton’s principle, and simplified using Navier analytical solutions, as well as the transverse shear stresses effect that satisfied the stress-free boundary conditions on the simply supported plate free faces as a parabolic variation along the thickness are taken into account. A functionally graded materials plates are chosen for the parametric study, where the plates are functionally graded continuously in materials through the plate thickness as a function of power law or exponential form. The aim of this study is to analyze the bending, free vibration as well as the buckling mechanical behaviors, where the results are more focused on the investigation of different parameters such as the volume fraction index, geometric ratios, frequency modes, in-plane compressive load parameters and material properties effects on the deflection, stresses, natural frequencies, and critical buckling load, which are validated in terms of accuracy and efficiency with other plate theories results found in the literature.


Author(s):  
Mohamed-Ouejdi Belarbi ◽  
Abdelhak Khechai ◽  
Aicha Bessaim ◽  
Mohammed-Sid-Ahmed Houari ◽  
Aman Garg ◽  
...  

In this paper, the bending behavior of functionally graded single-layered, symmetric and non-symmetric sandwich beams is investigated according to a new higher order shear deformation theory. Based on this theory, a novel parabolic shear deformation function is developed and applied to investigate the bending response of sandwich beams with homogeneous hardcore and softcore. The present theory provides an accurate parabolic distribution of transverse shear stress across the thickness and satisfies the zero traction boundary conditions on the top and bottom surfaces of the functionally graded sandwich beam without using any shear correction factors. The governing equations derived herein are solved by employing the finite element method using a two-node beam element, developed for this purpose. The material properties of functionally graded sandwich beams are graded through the thickness according to the power-law distribution. The predictive capability of the proposed finite element model is demonstrated through illustrative examples. Four types of beam support, i.e. simply-simply, clamped-free, clamped–clamped, and clamped-simply, are used to study how the beam deflection and both axial and transverse shear stresses are affected by the variation of volume fraction index and beam length-to-height ratio. Results of the numerical analysis have been reported and compared with those available in the open literature to evaluate the accuracy and robustness of the proposed finite element model. The comparisons with other higher order shear deformation theories verify that the proposed beam element is accurate, presents fast rate of convergence to the reference results and it is also valid for both thin and thick functionally graded sandwich beams. Further, some new results are reported in the current study, which will serve as a benchmark for future research.


Sign in / Sign up

Export Citation Format

Share Document